Abstract

Amorphous materials have low mobility due to their nature of disorder. Surprisingly, some disordered materials showed photocurrent amplification not by conventional photoconductive gain. Recently, amorphous Silicon (a-Si) photodiodes with thin a-Si layer (∼40 nm) have shown a gain-bandwidth product of over 2 THz with very low excess noise and also have been used as a gain media in a cascaded system with single photon sensitivity. To unveil the true gain mechanism, we performed theoretical modeling and numerical analysis along with experimental data at different frequencies. We show evidence of highly effective carrier multiplication process within a-Si as the primary gain mechanism, especially at high frequency. We also show presence of trap-induced junction modulation at much lower frequency. We modeled the gain mechanism in a-Si by solving the transport equations including dynamics of defect states and carrier multiplication via the local field model. We further justified the application of local field model for thin a-Si, based on the property that in a-Si, the mean-free path for energy relaxation is orders of magnitude greater than the mean-free-path for momentum relaxation. The analysis further suggests that the carrier multiplication process in thin a-Si can be much more efficient than in thick a-Si, even stronger than single crystalline Si in some cases. Although seemingly counter intuitive, this is consistent with the proposed cycling excitation process where the localized states in the bandtails of disordered materials such as a-Si relax the k-selection rule and increase the rate of carrier multiplication.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon., vol. 3, pp. 696–705, 2009. Accessed: 19, 2019. [Online]. Available: https://www.nature.com/articles/nphoton.2009.230
  2. H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: Future perspectives and applications,” Proc. IEEE, vol. 99, no. 11, pp. 2020–2039, 2011.
  3. R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.
  4. S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd ed.Boston, MA, USA: Pearson, 2013.
  5. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed.New York, NY, USA: Wiley, 2010.
  6. J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightw. Technol., vol. 25, no. 1, pp. 109–121, 2007.
  7. Y. Kanget al., “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photon., vol. 3, no. 1, pp. 59–63, 2009.
  8. S. N. Rahman, D. Hall, Z. Mei, and Y. H. Lo, “Multiple gain mechanisms integrated in APDs biased below breakdown for sensitivity improvement,” presented at the SPIE Defense, Secur., Sens., Baltimore, MD, USA, 2013, Paper 87270P.
  9. S. Nawar Rahman, D. Hall, and Y.-H. Lo, “Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms,” J. Appl. Phys., vol. 115, no. 17, 2014, Art. no. .
  10. R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement, vol. 3, no. 4, pp. 146–152, 1985.
  11. L. Yanet al., “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett., vol. 111, no. 10, 2017, Art. no. .
  12. L. Yan, M. A. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett., vol. 44, pp. 1746–1749, 2019.
  13. G. Juška and K. Arlauskas, “Impact ionization and mobilities of charge carriers at high electric fields in amorphous selenium,” Physica Status Solidi (a), vol. 59, no. 1, pp. 389–393, 1980.
  14. K. Taniokaet al., “An avalanche-mode amorphous selenium photoconductive layer for use as a camera tube target,” IEEE Electron Device Lett., vol. EDL-8, no. 9, pp. 392–394, 1987.
  15. K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.
  16. S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.
  17. M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.
  18. K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.
  19. M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.
  20. S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.
  21. Atlas User Manual, Silvaco, Inc., Santa Clara, CA, USA, , 2016.
  22. D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy,” Phys. Rev. B, vol. 25, no. 8, pp. 5285–5320, 1982.
  23. D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.
  24. W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.
  25. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Berlin, Germany: Springer, 2012. Accessed: Feb. 19, 2019. [Online]. Available: https://www.springer.com/us/book/9783709187548
  26. T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, no. 9, pp. 4344–4350, 1993.
  27. Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.
  28. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.
  29. G. H. Glover, “Study of electron energy relaxation times in GaAs and InP,” J. Appl. Phys., vol. 44, no. 3, pp. 1295–1301, 1973.
  30. E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.
  31. T. Kotani and M. van Schilfgaarde, “Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation,” Phys. Rev. B, vol. 81, no. 12, 2010, Art. no. .
  32. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed.Hoboken, NJ, USA: Wiley, 2007.
  33. S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, no. 2R, pp. 210–216, 1992.
  34. T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .
  35. J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.
  36. R. R. Mehta and B. S. Sharma, “Photoconductive gain greater than unity in CdSe films with Schottky barriers at the contacts,” J. Appl. Phys., vol. 44, no. 1, pp. 325–328, 1973.
  37. C. Y. Chen, “Theory of a modulated barrier photodiode,” Appl. Phys. Lett., vol. 39, no. 12, pp. 979–981, 1981.
  38. W. Shockley, “Problems related top-n junctions in silicon,” Czech. J. Phys., vol. 11, no. 2, pp. 81–121, 1961.
  39. B. K. Ridley, “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C: Solid State Phys., vol. 16, no. 17, pp. 3373–3388, 1983.
  40. E. Bringuier, “High-field transport statistics and impact excitation in semiconductors,” Phys. Rev. B, vol. 49, no. 12, pp. 7974–7989, 1994.
  41. K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.
  42. O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.
  43. K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.
  44. R. Van Overstraeten and H. De Man, “Measurement of the ionization rates in diffused silicon p-n junctions,” Solid-State Electron., vol. 13, no. 5, pp. 583–608, 1970.
  45. G. Allan, C. Delerue, and M. Lannoo, “Electronic structure and localized states in a model amorphous silicon,” Phys. Rev. B, vol. 57, no. 12, pp. 6933–6936, 1998.
  46. K. Chewet al., “Gap state distribution in amorphous hydrogenated silicon carbide films deduced from photothermal deflection spectroscopy,” J. Appl. Phys., vol. 91, no. 7, pp. 4319–4325, 2002.
  47. R. Atta-Fynn, P. Biswas, and D. A. Drabold, “Electron–phonon coupling is large for localized states,” Phys. Rev. B, vol. 69, no. 24, 2004, Art. no. .
  48. Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .
  49. Y.-H. Liuet al., “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett., vol. 107, no. 5, 2015, Art. no. .
  50. D. Hall, B. Li, Y.-H. Liu, L. Yan, and Y.-H. Lo, “Complementary metal–oxide–semiconductor compatible 1060  nm photodetector with ultrahigh gain under low bias,” Opt. Lett., vol. 40, no. 19, pp. 4440–4443, 2015.
  51. M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

2019 (1)

2017 (1)

L. Yanet al., “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett., vol. 111, no. 10, 2017, Art. no. .

2015 (3)

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

Y.-H. Liuet al., “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett., vol. 107, no. 5, 2015, Art. no. .

D. Hall, B. Li, Y.-H. Liu, L. Yan, and Y.-H. Lo, “Complementary metal–oxide–semiconductor compatible 1060  nm photodetector with ultrahigh gain under low bias,” Opt. Lett., vol. 40, no. 19, pp. 4440–4443, 2015.

2014 (1)

S. Nawar Rahman, D. Hall, and Y.-H. Lo, “Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms,” J. Appl. Phys., vol. 115, no. 17, 2014, Art. no. .

2011 (1)

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: Future perspectives and applications,” Proc. IEEE, vol. 99, no. 11, pp. 2020–2039, 2011.

2010 (1)

T. Kotani and M. van Schilfgaarde, “Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation,” Phys. Rev. B, vol. 81, no. 12, 2010, Art. no. .

2009 (2)

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

Y. Kanget al., “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photon., vol. 3, no. 1, pp. 59–63, 2009.

2008 (1)

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

2007 (1)

J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightw. Technol., vol. 25, no. 1, pp. 109–121, 2007.

2004 (3)

S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

R. Atta-Fynn, P. Biswas, and D. A. Drabold, “Electron–phonon coupling is large for localized states,” Phys. Rev. B, vol. 69, no. 24, 2004, Art. no. .

2002 (3)

K. Chewet al., “Gap state distribution in amorphous hydrogenated silicon carbide films deduced from photothermal deflection spectroscopy,” J. Appl. Phys., vol. 91, no. 7, pp. 4319–4325, 2002.

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

1998 (1)

G. Allan, C. Delerue, and M. Lannoo, “Electronic structure and localized states in a model amorphous silicon,” Phys. Rev. B, vol. 57, no. 12, pp. 6933–6936, 1998.

1996 (1)

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

1994 (2)

E. Bringuier, “High-field transport statistics and impact excitation in semiconductors,” Phys. Rev. B, vol. 49, no. 12, pp. 7974–7989, 1994.

K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.

1993 (2)

T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, no. 9, pp. 4344–4350, 1993.

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.

1992 (3)

S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, no. 2R, pp. 210–216, 1992.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

1990 (1)

W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.

1989 (1)

K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.

1988 (1)

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

1987 (1)

K. Taniokaet al., “An avalanche-mode amorphous selenium photoconductive layer for use as a camera tube target,” IEEE Electron Device Lett., vol. EDL-8, no. 9, pp. 392–394, 1987.

1985 (1)

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement, vol. 3, no. 4, pp. 146–152, 1985.

1984 (1)

J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.

1983 (1)

B. K. Ridley, “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C: Solid State Phys., vol. 16, no. 17, pp. 3373–3388, 1983.

1982 (1)

D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy,” Phys. Rev. B, vol. 25, no. 8, pp. 5285–5320, 1982.

1981 (1)

C. Y. Chen, “Theory of a modulated barrier photodiode,” Appl. Phys. Lett., vol. 39, no. 12, pp. 979–981, 1981.

1980 (2)

T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .

G. Juška and K. Arlauskas, “Impact ionization and mobilities of charge carriers at high electric fields in amorphous selenium,” Physica Status Solidi (a), vol. 59, no. 1, pp. 389–393, 1980.

1973 (2)

G. H. Glover, “Study of electron energy relaxation times in GaAs and InP,” J. Appl. Phys., vol. 44, no. 3, pp. 1295–1301, 1973.

R. R. Mehta and B. S. Sharma, “Photoconductive gain greater than unity in CdSe films with Schottky barriers at the contacts,” J. Appl. Phys., vol. 44, no. 1, pp. 325–328, 1973.

1970 (1)

R. Van Overstraeten and H. De Man, “Measurement of the ionization rates in diffused silicon p-n junctions,” Solid-State Electron., vol. 13, no. 5, pp. 583–608, 1970.

1967 (1)

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.

1961 (1)

W. Shockley, “Problems related top-n junctions in silicon,” Czech. J. Phys., vol. 11, no. 2, pp. 81–121, 1961.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed.New York, NY, USA: Wiley, 2010.

Akata, S.

K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.

Akiyama, M.

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

Allan, G.

G. Allan, C. Delerue, and M. Lannoo, “Electronic structure and localized states in a model amorphous silicon,” Phys. Rev. B, vol. 57, no. 12, pp. 6933–6936, 1998.

Ando, T.

K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.

Arlauskas, K.

G. Juška and K. Arlauskas, “Impact ionization and mobilities of charge carriers at high electric fields in amorphous selenium,” Physica Status Solidi (a), vol. 59, no. 1, pp. 389–393, 1980.

Atta-Fynn, R.

R. Atta-Fynn, P. Biswas, and D. A. Drabold, “Electron–phonon coupling is large for localized states,” Phys. Rev. B, vol. 69, no. 24, 2004, Art. no. .

Baranovskii, S. D.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.

Biswas, A.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: Future perspectives and applications,” Proc. IEEE, vol. 99, no. 11, pp. 2020–2039, 2011.

Biswas, P.

R. Atta-Fynn, P. Biswas, and D. A. Drabold, “Electron–phonon coupling is large for localized states,” Phys. Rev. B, vol. 69, no. 24, 2004, Art. no. .

Bringuier, E.

E. Bringuier, “High-field transport statistics and impact excitation in semiconductors,” Phys. Rev. B, vol. 49, no. 12, pp. 7974–7989, 1994.

Campbell, J. C.

J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightw. Technol., vol. 25, no. 1, pp. 109–121, 2007.

Cartier, E.

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.

Caughey, D. M.

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.

Chang, C.-Y.

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

Chen, C. Y.

C. Y. Chen, “Theory of a modulated barrier photodiode,” Appl. Phys. Lett., vol. 39, no. 12, pp. 979–981, 1981.

Chen, J.-K.

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

Chew, K.

K. Chewet al., “Gap state distribution in amorphous hydrogenated silicon carbide films deduced from photothermal deflection spectroscopy,” J. Appl. Phys., vol. 91, no. 7, pp. 4319–4325, 2002.

Choong, V.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

Cohen, J. D.

D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy,” Phys. Rev. B, vol. 25, no. 8, pp. 5285–5320, 1982.

Comelli, D.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

Constant, M.

J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.

Cubeddu, R.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

D'Andrea, C.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

De Man, H.

R. Van Overstraeten and H. De Man, “Measurement of the ionization rates in diffused silicon p-n junctions,” Solid-State Electron., vol. 13, no. 5, pp. 583–608, 1970.

Dease, C. G.

W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.

Decoster, D.

J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.

Delerue, C.

G. Allan, C. Delerue, and M. Lannoo, “Electronic structure and localized states in a model amorphous silicon,” Phys. Rev. B, vol. 57, no. 12, pp. 6933–6936, 1998.

Djordjevic, I. B.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: Future perspectives and applications,” Proc. IEEE, vol. 99, no. 11, pp. 2020–2039, 2011.

Drabold, D. A.

R. Atta-Fynn, P. Biswas, and D. A. Drabold, “Electron–phonon coupling is large for localized states,” Phys. Rev. B, vol. 69, no. 24, 2004, Art. no. .

Eklund, E. A.

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.

Fauchet, P. M.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

Fischetti, M. V.

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.

Gao, Y.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

Glover, G. H.

G. H. Glover, “Study of electron energy relaxation times in GaAs and InP,” J. Appl. Phys., vol. 44, no. 3, pp. 1295–1301, 1973.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon., vol. 3, pp. 696–705, 2009. Accessed: 19, 2019. [Online]. Available: https://www.nature.com/articles/nphoton.2009.230

Hall, D.

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

D. Hall, B. Li, Y.-H. Liu, L. Yan, and Y.-H. Lo, “Complementary metal–oxide–semiconductor compatible 1060  nm photodetector with ultrahigh gain under low bias,” Opt. Lett., vol. 40, no. 19, pp. 4440–4443, 2015.

S. Nawar Rahman, D. Hall, and Y.-H. Lo, “Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms,” J. Appl. Phys., vol. 115, no. 17, 2014, Art. no. .

S. N. Rahman, D. Hall, Z. Mei, and Y. H. Lo, “Multiple gain mechanisms integrated in APDs biased below breakdown for sensitivity improvement,” presented at the SPIE Defense, Secur., Sens., Baltimore, MD, USA, 2013, Paper 87270P.

M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

Hamakawa, Y.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

Hanada, M.

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

Harbison, J. P.

D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy,” Phys. Rev. B, vol. 25, no. 8, pp. 5285–5320, 1982.

Hattori, K.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

Hemmati, H.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: Future perspectives and applications,” Proc. IEEE, vol. 99, no. 11, pp. 2020–2039, 2011.

Hirai, T.

K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.

Hong, J.-W.

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

Hsieh, B. R.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

Hulin, D.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

Ishida, M.

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

Ishida, T.

T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, no. 9, pp. 4344–4350, 1993.

Ishiko, T.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

Jandieri, K.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

Juška, G.

G. Juška and K. Arlauskas, “Impact ionization and mobilities of charge carriers at high electric fields in amorphous selenium,” Physica Status Solidi (a), vol. 59, no. 1, pp. 389–393, 1980.

Jwo, S.-C.

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

Kang, Y.

Y. Kanget al., “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photon., vol. 3, no. 1, pp. 59–63, 2009.

Kasap, S.

S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.

Kasap, S. O.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd ed.Boston, MA, USA: Pearson, 2013.

Khanaka, G. H.

W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.

Kobayashi, H.

T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, no. 9, pp. 4344–4350, 1993.

Kotani, T.

T. Kotani and M. van Schilfgaarde, “Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation,” Phys. Rev. B, vol. 81, no. 12, 2010, Art. no. .

Lang, D. V.

D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy,” Phys. Rev. B, vol. 25, no. 8, pp. 5285–5320, 1982.

Lannoo, M.

G. Allan, C. Delerue, and M. Lannoo, “Electronic structure and localized states in a model amorphous silicon,” Phys. Rev. B, vol. 57, no. 12, pp. 6933–6936, 1998.

Li, B.

Liu, Y.-H.

L. Yan, M. A. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett., vol. 44, pp. 1746–1749, 2019.

D. Hall, B. Li, Y.-H. Liu, L. Yan, and Y.-H. Lo, “Complementary metal–oxide–semiconductor compatible 1060  nm photodetector with ultrahigh gain under low bias,” Opt. Lett., vol. 40, no. 19, pp. 4440–4443, 2015.

Y.-H. Liuet al., “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett., vol. 107, no. 5, 2015, Art. no. .

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

Lo, Y. H.

S. N. Rahman, D. Hall, Z. Mei, and Y. H. Lo, “Multiple gain mechanisms integrated in APDs biased below breakdown for sensitivity improvement,” presented at the SPIE Defense, Secur., Sens., Baltimore, MD, USA, 2013, Paper 87270P.

Lo, Y.-H.

L. Yan, M. A. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett., vol. 44, pp. 1746–1749, 2019.

D. Hall, B. Li, Y.-H. Liu, L. Yan, and Y.-H. Lo, “Complementary metal–oxide–semiconductor compatible 1060  nm photodetector with ultrahigh gain under low bias,” Opt. Lett., vol. 40, no. 19, pp. 4440–4443, 2015.

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

S. Nawar Rahman, D. Hall, and Y.-H. Lo, “Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms,” J. Appl. Phys., vol. 115, no. 17, 2014, Art. no. .

M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

McFeely, F. R.

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.

McIntyre, R. J.

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement, vol. 3, no. 4, pp. 146–152, 1985.

Mehta, R. R.

R. R. Mehta and B. S. Sharma, “Photoconductive gain greater than unity in CdSe films with Schottky barriers at the contacts,” J. Appl. Phys., vol. 44, no. 1, pp. 325–328, 1973.

Mei, Z.

S. N. Rahman, D. Hall, Z. Mei, and Y. H. Lo, “Multiple gain mechanisms integrated in APDs biased below breakdown for sensitivity improvement,” presented at the SPIE Defense, Secur., Sens., Baltimore, MD, USA, 2013, Paper 87270P.

Miah, M. A.

Mizushima, Y.

T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .

Mochizuki, C.

K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.

Mourchid, A.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

Nakato, Y.

T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, no. 9, pp. 4344–4350, 1993.

Nawar Rahman, S.

S. Nawar Rahman, D. Hall, and Y.-H. Lo, “Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms,” J. Appl. Phys., vol. 115, no. 17, 2014, Art. no. .

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed.Hoboken, NJ, USA: Wiley, 2007.

Niaz, I. A.

M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

Nighan, W. L.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

Okamoto, H.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

Park, Y.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

Pocha, M. D.

W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.

Rahman, S. N.

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

S. N. Rahman, D. Hall, Z. Mei, and Y. H. Lo, “Multiple gain mechanisms integrated in APDs biased below breakdown for sensitivity improvement,” presented at the SPIE Defense, Secur., Sens., Baltimore, MD, USA, 2013, Paper 87270P.

Raihan Miah, M. A.

M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

Reznik, A.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

Ridley, B. K.

B. K. Ridley, “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C: Solid State Phys., vol. 16, no. 17, pp. 3373–3388, 1983.

Rowlands, J. A.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.

Rubel, O.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

Sakata, S.

T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .

Sawada, K.

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.

Selberherr, S.

S. Selberherr, Analysis and Simulation of Semiconductor Devices. Berlin, Germany: Springer, 2012. Accessed: Feb. 19, 2019. [Online]. Available: https://www.springer.com/us/book/9783709187548

Sham, L. J.

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

Sharma, B. S.

R. R. Mehta and B. S. Sharma, “Photoconductive gain greater than unity in CdSe films with Schottky barriers at the contacts,” J. Appl. Phys., vol. 44, no. 1, pp. 325–328, 1973.

Shockley, W.

W. Shockley, “Problems related top-n junctions in silicon,” Czech. J. Phys., vol. 11, no. 2, pp. 81–121, 1961.

Soares, S. F.

S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, no. 2R, pp. 210–216, 1992.

Sugeta, T.

T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed.Hoboken, NJ, USA: Wiley, 2007.

Takao, H.

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

Takasaki, Y.

K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.

Taketoshi, K.

K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.

Tang, C. W.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

Tanioka, K.

S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.

K. Taniokaet al., “An avalanche-mode amorphous selenium photoconductive layer for use as a camera tube target,” IEEE Electron Device Lett., vol. EDL-8, no. 9, pp. 392–394, 1987.

Taroni, P.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

Thomas, P.

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

Thomas, R. E.

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.

Tsuji, K.

K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.

Urisu, T.

T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .

Valentini, G.

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

Van Overstraeten, R.

R. Van Overstraeten and H. De Man, “Measurement of the ionization rates in diffused silicon p-n junctions,” Solid-State Electron., vol. 13, no. 5, pp. 583–608, 1970.

van Schilfgaarde, M.

T. Kotani and M. van Schilfgaarde, “Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation,” Phys. Rev. B, vol. 81, no. 12, 2010, Art. no. .

Vanderhaghen, R.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

Vaterkowski, J. L.

J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.

Vilcot, J. P.

J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.

White, W. T.

W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.

Wu, M.-T.

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

Yan, L.

Yoshimi, M.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

Zhou, Y.

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

Zvyagin, I. P.

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

Appl. Phys. Lett. (7)

L. Yanet al., “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett., vol. 111, no. 10, 2017, Art. no. .

K. Sawada, C. Mochizuki, S. Akata, and T. Ando, “Photocurrent multiplication in hydrogenated amorphous silicon p-i-n photodiode films,” Appl. Phys. Lett., vol. 65, no. 11, pp. 1364–1366, 1994.

Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2699–2701, 1996.

E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon,” Appl. Phys. Lett., vol. 62, no. 25, pp. 3339–3341, 1993.

C. Y. Chen, “Theory of a modulated barrier photodiode,” Appl. Phys. Lett., vol. 39, no. 12, pp. 979–981, 1981.

Y. Zhou, Y.-H. Liu, S. N. Rahman, D. Hall, L. J. Sham, and Y.-H. Lo, “Discovery of a photoresponse amplification mechanism in compensated PN junctions,” Appl. Phys. Lett., vol. 106, no. 3, 2015, Art. no. .

Y.-H. Liuet al., “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett., vol. 107, no. 5, 2015, Art. no. .

Czech. J. Phys. (1)

W. Shockley, “Problems related top-n junctions in silicon,” Czech. J. Phys., vol. 11, no. 2, pp. 81–121, 1961.

Electron. Lett. (1)

J. P. Vilcot, J. L. Vaterkowski, D. Decoster, and M. Constant, “Temperature effects on high-gain photoconductive detectors,” Electron. Lett., vol. 20, no. 2, pp. 86–88, 1984.

IEEE Electron Device Lett. (1)

K. Taniokaet al., “An avalanche-mode amorphous selenium photoconductive layer for use as a camera tube target,” IEEE Electron Device Lett., vol. EDL-8, no. 9, pp. 392–394, 1987.

IEEE Trans. Electron Devices (2)

S.-C. Jwo, M.-T. Wu, J.-K. Chen, J.-W. Hong, and C.-Y. Chang, “Amorphous silicon/silicon carbide superlattice avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 35, no. 8, pp. 1279–1283, 1988.

W. T. White, C. G. Dease, M. D. Pocha, and G. H. Khanaka, “Modeling GaAs high-voltage, subnanosecond photoconductive switches in one spatial dimension,” IEEE Trans. Electron Devices, vol. 37, no. 12, pp. 2532–2541, 1990.

J. Appl. Phys. (7)

S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka, “Lucky drift impact ionization in amorphous semiconductors,” J. Appl. Phys., vol. 96, no. 4, pp. 2037–2048, 2004.

R. R. Mehta and B. S. Sharma, “Photoconductive gain greater than unity in CdSe films with Schottky barriers at the contacts,” J. Appl. Phys., vol. 44, no. 1, pp. 325–328, 1973.

T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, no. 9, pp. 4344–4350, 1993.

G. H. Glover, “Study of electron energy relaxation times in GaAs and InP,” J. Appl. Phys., vol. 44, no. 3, pp. 1295–1301, 1973.

M. Yoshimi, T. Ishiko, K. Hattori, H. Okamoto, and Y. Hamakawa, “Photocurrent multiplication in a hydrogenated amorphous silicon-based p-i-n junction with an a-SiN:H layer,” J. Appl. Phys., vol. 72, no. 7, pp. 3186–3193, 1992.

S. Nawar Rahman, D. Hall, and Y.-H. Lo, “Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms,” J. Appl. Phys., vol. 115, no. 17, 2014, Art. no. .

K. Chewet al., “Gap state distribution in amorphous hydrogenated silicon carbide films deduced from photothermal deflection spectroscopy,” J. Appl. Phys., vol. 91, no. 7, pp. 4319–4325, 2002.

J. Lightw. Technol. (1)

J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightw. Technol., vol. 25, no. 1, pp. 109–121, 2007.

J. Mater Sci. Mater. Electron. (1)

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “Lucky-drift model for impact ionization in amorphous semiconductors,” J. Mater Sci. Mater. Electron., vol. 20, no. 1, pp. 221–225, 2009.

J. Non-Crystalline Solids (2)

K. Tsuji, Y. Takasaki, T. Hirai, and K. Taketoshi, “Impact ionization process in amorphous selenium,” J. Non-Crystalline Solids, vol. 114, pp. 94–96, 1989.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, “The properties of free carriers in amorphous silicon,” J. Non-Crystalline Solids, vol. 141, pp. 76–87, 1992.

J. Phys. C: Solid State Phys. (1)

B. K. Ridley, “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C: Solid State Phys., vol. 16, no. 17, pp. 3373–3388, 1983.

J. Phys. D: Appl. Phys. (1)

R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D: Appl. Phys., vol. 35, no. 9, pp. R61–R76, 2002.

Jpn. J. Appl. Phys. (3)

M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, “Excess noise characteristics of hydrogenated amorphous silicon p-i-n photodiode films,” Jpn. J. Appl. Phys., vol. 41, no. 4S, pp. 2552–2555, 2002.

S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, no. 2R, pp. 210–216, 1992.

T. Sugeta, T. Urisu, S. Sakata, and Y. Mizushima, “Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits,” Jpn. J. Appl. Phys., vol. 19, no. S1, 1980, Art. no. .

Measurement (1)

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement, vol. 3, no. 4, pp. 146–152, 1985.

Nature Photon. (2)

Y. Kanget al., “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nature Photon., vol. 3, no. 1, pp. 59–63, 2009.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon., vol. 3, pp. 696–705, 2009. Accessed: 19, 2019. [Online]. Available: https://www.nature.com/articles/nphoton.2009.230

Opt. Lett. (2)

Phys. Rev. B (5)

R. Atta-Fynn, P. Biswas, and D. A. Drabold, “Electron–phonon coupling is large for localized states,” Phys. Rev. B, vol. 69, no. 24, 2004, Art. no. .

G. Allan, C. Delerue, and M. Lannoo, “Electronic structure and localized states in a model amorphous silicon,” Phys. Rev. B, vol. 57, no. 12, pp. 6933–6936, 1998.

E. Bringuier, “High-field transport statistics and impact excitation in semiconductors,” Phys. Rev. B, vol. 49, no. 12, pp. 7974–7989, 1994.

T. Kotani and M. van Schilfgaarde, “Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation,” Phys. Rev. B, vol. 81, no. 12, 2010, Art. no. .

D. V. Lang, J. D. Cohen, and J. P. Harbison, “Measurement of the density of gap states in hydrogenated amorphous silicon by space charge spectroscopy,” Phys. Rev. B, vol. 25, no. 8, pp. 5285–5320, 1982.

Physica Status Solidi (a) (1)

G. Juška and K. Arlauskas, “Impact ionization and mobilities of charge carriers at high electric fields in amorphous selenium,” Physica Status Solidi (a), vol. 59, no. 1, pp. 389–393, 1980.

Physica Status Solidi (C) (1)

O. Rubel, S. D. Baranovskii, I. P. Zvyagin, P. Thomas, and S. O. Kasap, “Lucky-drift model for avalanche multiplication in amorphous semiconductors,” Physica Status Solidi (C), vol. 1, no. 5, pp. 1186–1193, 2004.

Physica Status Solidi C (1)

K. Jandieri, O. Rubel, S. D. Baranovskii, A. Reznik, J. A. Rowlands, and S. O. Kasap, “One-dimensional lucky-drift model with scattering and movement asymmetries for impact ionization in amorphous semiconductors,” Physica Status Solidi C, vol. 5, no. 3, pp. 796–799, 2008.

Proc. IEEE (2)

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: Future perspectives and applications,” Proc. IEEE, vol. 99, no. 11, pp. 2020–2039, 2011.

D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.

Solid-State Electron. (1)

R. Van Overstraeten and H. De Man, “Measurement of the ionization rates in diffused silicon p-n junctions,” Solid-State Electron., vol. 13, no. 5, pp. 583–608, 1970.

Other (7)

M. A. Raihan Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” presented at the SPIE OPTO, San Francisco, CA, USA, 2017, Paper 101080X.

Atlas User Manual, Silvaco, Inc., Santa Clara, CA, USA, , 2016.

S. Selberherr, Analysis and Simulation of Semiconductor Devices. Berlin, Germany: Springer, 2012. Accessed: Feb. 19, 2019. [Online]. Available: https://www.springer.com/us/book/9783709187548

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed.Hoboken, NJ, USA: Wiley, 2007.

S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd ed.Boston, MA, USA: Pearson, 2013.

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed.New York, NY, USA: Wiley, 2010.

S. N. Rahman, D. Hall, Z. Mei, and Y. H. Lo, “Multiple gain mechanisms integrated in APDs biased below breakdown for sensitivity improvement,” presented at the SPIE Defense, Secur., Sens., Baltimore, MD, USA, 2013, Paper 87270P.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.