Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 13,
  • pp. 3373-3380
  • (2019)

Plasmonic Fiber-Optic Photothermal Anemometers With Carbon Nanotube Coatings

Not Accessible

Your library or personal account may give you access

Abstract

We propose and demonstrate an ultra-sensitive plasmonic fiber-optic hot-wire anemometer. This instrument comprises a highly tilted fiber Bragg grating-assisted surface plasmon resonance (SPR) sensor, which is coated with carbon nanotubes as the photothermal conversion element. The carbon nanotubes on the sensor surface efficiently convert light from the heating laser, of which wavelength matched to the SPR window, into heat, thereby setting the sensor in an elevated temperature state. Air flow draws away surface heat, thus inducing both a strong SPR wavelength shift and power modulation. Using this anemometer, we experimentally achieve a dynamic range of 0.05 to 0.65 m/s for wind speed measurement. Furthermore, we demonstrate real-time monitoring of wind speed by measuring the intensity of the heating laser. This sensor is simple and robust in structure. It has a wide range of potential applications in both scientific research and industrial production.

© 2019 IEEE

PDF Article
More Like This
Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating

Yang Zhang, Fang Wang, Zigeng Liu, Zhihui Duan, Wenli Cui, Jie Han, Yiying Gu, Zhenlin Wu, Zhenguo Jing, Changsen Sun, and Wei Peng
Opt. Express 25(20) 24521-24530 (2017)

Fiber-optic airflow velocity sensing method based on a 45° tilt fiber grating combined with a single-walled carbon nanotube coated fiber

Hongwei Li, Jinling Zhang, Zhijun Yan, and Guohui Lyu
Opt. Express 29(24) 40015-40023 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.