Abstract

Weak illumination by light emitting diode (LED) can be realized by either peak-power transmission at a low duty cycle or low-power transmission at a regular duty cycle. In this paper, we address the signal characterization and transmission rate of visible light communication for the latter case. We first characterize the LED nonlinear effect via a state transition model based on the experimental measurements. Then, we adopt hidden Markov model (HMM) to characterize the LED transmission under weak illumination. Based on the HMM, we propose a Monte Carlo method to compute the achievable transmission rate and apply Viterbi algorithm to detect the signals. The achievable transmission rates and detection performance of the HMM-based model are evaluated by simulation results. Moreover, both numerical and experimental results show lower bit error rate of the Viterbi algorithm compared with the per symbol detection.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription