Abstract

An analytical technique based on Volterra series for systematically computing distortion in analog microwave photonic (MWP) links is presented in this paper. In the analysis, we express both modulator and photodetector responses in the MWP link as Taylor series expansions, which are then nested to give rise to Volterra series for systems with memory. Closed-form expressions of the link photocurrent and optical power based on the $n{\rm{th}}$ -order Volterra kernels are derived from the functional Taylor series of the MWP link. These expressions are applicable in both direct detection and phase-modulated conditions hitherto referred to as memoryless case and with memory, respectively. The synthesized Volterra kernels are primarily used to determine key figures of merit such as $n{\rm{th}}$ -order harmonic distortion, third-order intermodulation distortion (IMDn), and third-order intercept point (OIPn) for an arbitrary MWP link. We apply the technique to a photonic link having a ring-assisted Mach–Zehnder interferometer (RAMZI) filter and compare its OIP3 performance with that of an MZI discriminator. Within a bandwidth of 20 GHz, it is shown that RAMZI has 10-dB better OIP3 performance than MZI. We also illustrate that OIP3 and IMD measurements done using three-tone tests would result in more accurate predictions of MWP link parameters than standard two-tone tests.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription