Abstract

We exploit the coherence of frequency combs for high spectral efficiency superchannel transmission via effective sharing of a single pilot tone. By phase-locking the receiver comb to the transmitted pilot tone, carrier offsets are suppressed while both the overhead and complexity associated with the pilot tone are reduced. We form a 55 carrier superchannel using a 25-GHz spaced electro-optic frequency comb seeded by a 100-kHz linewidth laser. At a pilot tone overhead of $<$ 2%, the reduction in carrier offsets is shown to facilitate blind DSP-based carrier recovery of all 54 $\times$ 24 Gbaud PM-128QAM data channels. The resulting superchannel spectral efficiency is 10.3 bits/s/Hz assuming a 28% overhead for forward error correction. Our results show the potential for optical pilot tones to reduce both overhead and complexity in systems using comb-based superchannels together with high-order modulation formats.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Somaet al., “10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.A.1.
  2. J.-X. Caiet al., “51.5 Tb/s capacity over 17,107 km in C+L bandwidth using single mode fibers and nonlinearity compensation,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.A.2.
  3. P. Marin-Palomoet al., “Microresonator-based solitons for massively parallel coherent optical communications,” Nature, vol. 546, no. 7657, pp. 274–279, 2017.
  4. W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper MF78.
  5. V. Vujicicet al., “Quantum dash mode-locked lasers for data centre applications,” J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 53–60, 2015.
  6. M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.
  7. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.
  8. R. Slaviket al., “Stable and efficient generation of high repetition rate (>160 GHz) subpicosecond optical pulses,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 540–542,  2011.
  9. V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.
  10. B. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDP3.1.
  11. J. N. Kemalet al., “32QAM WDM transmission using a quantum-dash passively mode-locked laser with resonant feedback,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5C.3.
  12. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for $ M$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.
  13. R. H. Walden, “Performance trends for analog to digital converters,” IEEE Commun. Mag., vol. 37, no. 2, pp. 96–101,  1999.
  14. F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.
  15. R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.
  16. V. Lalet al., “Extended C-band tunable multi-channel InP-based coherent transmitter PICs,” J. Lightw. Technol., vol. 35, no. 7, pp. 1320–1327,  2017.
  17. L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.
  18. A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.
  19. A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.
  20. M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “10 Tb/s self-homodyne 64-QAM superchannel transmission with 4% spectral overhead,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3F.4.
  21. M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.
  22. D. Huang, T.-H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.
  23. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightw. Technol., vol. 25, no. 9, pp. 2675–2692,  2007.
  24. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. Eur. Conf. Opt. Commun., 2009, Paper P3.08.
  25. A. Meiyappan, P. Y. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightw. Technol., vol. 31, no. 13, pp. 2055–2069,  2013.
  26. D. Huang, T. H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.
  27. D. Qianet al., “101.7-Tb/s (370 $\times$ 294-Gb/s) PDM-128QAM-OFDM transmission over 3 $\times$ 55-km SSMF using pilot-based phase noise mitigation,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper PDPB5.
  28. D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.
  29. H. Huet al., “Adaptive rates of high-spectral-efficiency WDM/SDM channels using PDM-1024-QAM probabilistic shaping,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Tu.1.D.1.
  30. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015.
  31. A. Ishizawaet al., “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express, vol. 21, no. 24, pp. 29 186–29 194, 2013.
  32. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.
  33. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.
  34. J. H. Ke, Y. Gao, and J. C. Cartledge, “400 gbit/s single-carrier and 1 tbit/s three-carrier superchannel signals using dual polarization 16-qam with look-up table correction and optical pulse shaping,” Opt. Express, vol. 22, no. 1, pp. 71–84, 2014.
  35. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.
  36. T. Rahmanet al., “Long-haul transmission of PM-16QAM, PM-32QAM and PM-64QAM based terabit superchannels over a field deployed legacy fiber,” J. Lightw. Technol., vol. 34, no. 13, pp. 3071–3079,  2016.
  37. J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.
  38. S. Chandrasekharet al., “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.1.
  39. J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.
  40. T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.
  41. R. Goinget al., “Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100GBd, 32QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.C.3.
  42. R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.
  43. Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.
  44. W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.
  45. P.-H. Wanget al., “Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization,” Opt. Express, vol. 21, no. 19, pp. 22 441–22 452, 2013.

2017 (5)

P. Marin-Palomoet al., “Microresonator-based solitons for massively parallel coherent optical communications,” Nature, vol. 546, no. 7657, pp. 274–279, 2017.

V. Lalet al., “Extended C-band tunable multi-channel InP-based coherent transmitter PICs,” J. Lightw. Technol., vol. 35, no. 7, pp. 1320–1327,  2017.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.

J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.

2016 (5)

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

T. Rahmanet al., “Long-haul transmission of PM-16QAM, PM-32QAM and PM-64QAM based terabit superchannels over a field deployed legacy fiber,” J. Lightw. Technol., vol. 34, no. 13, pp. 3071–3079,  2016.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

2015 (3)

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015.

V. Vujicicet al., “Quantum dash mode-locked lasers for data centre applications,” J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 53–60, 2015.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.

2014 (2)

J. H. Ke, Y. Gao, and J. C. Cartledge, “400 gbit/s single-carrier and 1 tbit/s three-carrier superchannel signals using dual polarization 16-qam with look-up table correction and optical pulse shaping,” Opt. Express, vol. 22, no. 1, pp. 71–84, 2014.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

2013 (6)

A. Meiyappan, P. Y. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightw. Technol., vol. 31, no. 13, pp. 2055–2069,  2013.

D. Huang, T. H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

A. Ishizawaet al., “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express, vol. 21, no. 24, pp. 29 186–29 194, 2013.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.

D. Huang, T.-H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

P.-H. Wanget al., “Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization,” Opt. Express, vol. 21, no. 19, pp. 22 441–22 452, 2013.

2012 (2)

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

2011 (1)

R. Slaviket al., “Stable and efficient generation of high repetition rate (>160 GHz) subpicosecond optical pulses,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 540–542,  2011.

2009 (1)

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for $ M$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

2007 (1)

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightw. Technol., vol. 25, no. 9, pp. 2675–2692,  2007.

2001 (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

1999 (1)

R. H. Walden, “Performance trends for analog to digital converters,” IEEE Commun. Mag., vol. 37, no. 2, pp. 96–101,  1999.

Agazzi, O. E.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

Agrell, E.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

Aguirre, A.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

Alic, N.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

Alvarado, A.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

Andrekson, P. A.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “10 Tb/s self-homodyne 64-QAM superchannel transmission with 4% spectral overhead,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3F.4.

M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.

L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper MF78.

Araya, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

Ataie, V.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

Awaji, Y.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

Bayvel, P.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

Beppu, S.

Bogaerts, W.

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Buchali, F.

F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

Cai, J.-X.

J.-X. Caiet al., “51.5 Tb/s capacity over 17,107 km in C+L bandwidth using single mode fibers and nonlinearity compensation,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.A.2.

Cartledge, J. C.

Castrillón, M. A.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

Chandrasekhar, S.

S. Chandrasekharet al., “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.1.

Cheng, T. H.

D. Huang, T. H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

Cheng, T.-H.

D. Huang, T.-H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

Ciblat, P.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. Eur. Conf. Opt. Commun., 2009, Paper P3.08.

Corcoran, B.

J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.

Croussore, K.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Eriksson, T. A.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

Farwell, S.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Farwell, S. G.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.

Fujiwara, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

Fülöp, A.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

Gao, Y.

Going, R.

R. Goinget al., “Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100GBd, 32QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.C.3.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Hoffmann, S.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for $ M$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

Hu, H.

H. Huet al., “Adaptive rates of high-spectral-efficiency WDM/SDM channels using PDM-1024-QAM probabilistic shaping,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Tu.1.D.1.

Huang, D.

D. Huang, T. H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

D. Huang, T.-H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

Hueda, M. R.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

Ip, E.

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightw. Technol., vol. 25, no. 9, pp. 2675–2692,  2007.

Ishizawa, A.

A. Ishizawaet al., “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express, vol. 21, no. 24, pp. 29 186–29 194, 2013.

Jaouen, Y.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. Eur. Conf. Opt. Commun., 2009, Paper P3.08.

Jignesh, J.

J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.

Kahn, J. M.

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightw. Technol., vol. 25, no. 9, pp. 2675–2692,  2007.

Kam, P. Y.

A. Meiyappan, P. Y. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightw. Technol., vol. 31, no. 13, pp. 2055–2069,  2013.

Kan, T.

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.

Kani, J.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

Karlsson, M.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.

M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “10 Tb/s self-homodyne 64-QAM superchannel transmission with 4% spectral overhead,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3F.4.

M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.

Kasai, K.

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015.

Ke, J. H.

Kemal, J. N.

J. N. Kemalet al., “32QAM WDM transmission using a quantum-dash passively mode-locked laser with resonant feedback,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5C.3.

Kim, H.

A. Meiyappan, P. Y. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightw. Technol., vol. 31, no. 13, pp. 2055–2069,  2013.

Klaus, W.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

Klekamp, A.

F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

Kuo, B. P. P.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

Kuo, B. P.-P.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

Lal, V.

V. Lalet al., “Extended C-band tunable multi-channel InP-based coherent transmitter PICs,” J. Lightw. Technol., vol. 35, no. 7, pp. 1320–1327,  2017.

Lauermann, M.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Lavery, D.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

Leaird, D. E.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.

Liu, Z.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Lorences-Riesgo, A.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.

M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “10 Tb/s self-homodyne 64-QAM superchannel transmission with 4% spectral overhead,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3F.4.

M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.

Lowery, A.

J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.

Lundberg, L.

L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.

Maher, R.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Mao, W.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper MF78.

Marin-Palomo, P.

P. Marin-Palomoet al., “Microresonator-based solitons for massively parallel coherent optical communications,” Nature, vol. 546, no. 7657, pp. 274–279, 2017.

Mazur, M.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.

M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.

M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “10 Tb/s self-homodyne 64-QAM superchannel transmission with 4% spectral overhead,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3F.4.

Meiyappan, A.

A. Meiyappan, P. Y. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightw. Technol., vol. 31, no. 13, pp. 2055–2069,  2013.

Mendinueta, J. M. D.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.

Morero, D. A.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

Myslivets, E.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

Nakazawa, M.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015.

Noé, R.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for $ M$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

Pfau, T.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for $ M$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

Puttnam, B.

B. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDP3.1.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

Qian, D.

D. Qianet al., “101.7-Tb/s (370 $\times$ 294-Gb/s) PDM-128QAM-OFDM transmission over 3 $\times$ 55-km SSMF using pilot-based phase noise mitigation,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper PDPB5.

Radic, S.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

Rahman, T.

T. Rahmanet al., “Long-haul transmission of PM-16QAM, PM-32QAM and PM-64QAM based terabit superchannels over a field deployed legacy fiber,” J. Lightw. Technol., vol. 34, no. 13, pp. 3071–3079,  2016.

Rahn, J.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Richardson, D. J.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Sakaguchi, J.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

Schmalen, L.

F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

Schröder, J.

J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.

M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.

Selmi, M.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. Eur. Conf. Opt. Commun., 2009, Paper P3.08.

Slavik, R.

R. Slaviket al., “Stable and efficient generation of high repetition rate (>160 GHz) subpicosecond optical pulses,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 540–542,  2011.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Slavík, R.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.

Soma, D.

D. Somaet al., “10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.A.1.

Suzuki, H.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

Teshima, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

Tomislav, D.

F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

Tong, Z.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.

Toulouse, J.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper MF78.

Vujicic, V.

V. Vujicicet al., “Quantum dash mode-locked lasers for data centre applications,” J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 53–60, 2015.

Wada, N.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

Walden, R. H.

R. H. Walden, “Performance trends for analog to digital converters,” IEEE Commun. Mag., vol. 37, no. 2, pp. 96–101,  1999.

Wale, M.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Wale, M. J.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.

Wang, P.-H.

P.-H. Wanget al., “Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization,” Opt. Express, vol. 21, no. 19, pp. 22 441–22 452, 2013.

Wang, Y.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.

Weiner, A. M.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.

Wiberg, A. O. J.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

Xu, X.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Yoshida, M.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015.

Yu, C.

D. Huang, T. H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

D. Huang, T.-H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

Electron. Lett. (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol. 37, no. 15, pp. 967–968, 2001.

IEEE Commun. Mag. (1)

R. H. Walden, “Performance trends for analog to digital converters,” IEEE Commun. Mag., vol. 37, no. 2, pp. 96–101,  1999.

IEEE Photon. Technol. Lett. (4)

R. Slaviket al., “Stable and efficient generation of high repetition rate (>160 GHz) subpicosecond optical pulses,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 540–542,  2011.

D. Huang, T.-H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

D. Huang, T. H. Cheng, and C. Yu, “Accurate two-stage frequency offset estimation for coherent optical systems,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 179–182,  2013.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact optical comb generator using InP tunable laser and push-pull modulator,” IEEE Photon. Technol. Lett., vol. 27, no. 2, pp. 217–220,  2015.

J. Lightw. Technol. (9)

A. Meiyappan, P. Y. Kam, and H. Kim, “On decision aided carrier phase and frequency offset estimation in coherent optical receivers,” J. Lightw. Technol., vol. 31, no. 13, pp. 2055–2069,  2013.

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightw. Technol., vol. 25, no. 9, pp. 2675–2692,  2007.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightw. Technol., vol. 34, no. 8, pp. 1800–1806,  2016.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 34, no. 2, pp. 707–721,  2016.

T. Rahmanet al., “Long-haul transmission of PM-16QAM, PM-32QAM and PM-64QAM based terabit superchannels over a field deployed legacy fiber,” J. Lightw. Technol., vol. 34, no. 13, pp. 3071–3079,  2016.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136,  2016.

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846,  2014.

V. Lalet al., “Extended C-band tunable multi-channel InP-based coherent transmitter PICs,” J. Lightw. Technol., vol. 35, no. 7, pp. 1320–1327,  2017.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for $ M$-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999,  2009.

J. Sel. Topics Quantum Electron. (2)

V. Vujicicet al., “Quantum dash mode-locked lasers for data centre applications,” J. Sel. Topics Quantum Electron., vol. 21, no. 6, pp. 53–60, 2015.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” J. Sel. Topics Quantum Electron., vol. 19, no. 6, pp. 231–236, 2013.

Laser Photon. Rev. (1)

W. Bogaertset al., “Silicon microring resonators,” Laser Photon. Rev., vol. 6, no. 1, pp. 47–73, 2012.

Nature (1)

P. Marin-Palomoet al., “Microresonator-based solitons for massively parallel coherent optical communications,” Nature, vol. 546, no. 7657, pp. 274–279, 2017.

Opt. Express (8)

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express, vol. 25, no. 19, pp. 22 726–22 737, 2017.

J. Jignesh, B. Corcoran, J. Schröder, and A. Lowery, “Polarization independent optical injection locking for carrier recovery in optical communication systems,” Opt. Express, vol. 25, no. 18, pp. 21 216–21 228, 2017.

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24 x 32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express, vol. 24, no. 26, pp. 29 714–29 723, 2016.

P.-H. Wanget al., “Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization,” Opt. Express, vol. 21, no. 19, pp. 22 441–22 452, 2013.

A. Ishizawaet al., “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express, vol. 21, no. 24, pp. 29 186–29 194, 2013.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express, vol. 20, no. 16, pp. 17 610–17 619, 2012.

J. H. Ke, Y. Gao, and J. C. Cartledge, “400 gbit/s single-carrier and 1 tbit/s three-carrier superchannel signals using dual polarization 16-qam with look-up table correction and optical pulse shaping,” Opt. Express, vol. 22, no. 1, pp. 71–84, 2014.

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express, vol. 23, no. 4, pp. 4960–4969, 2015.

Other (18)

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavik, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM coherent transmission over 160 km with injection-locked homodyne detection,” 2017, Paper Tu2E.1.

M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “10 Tb/s self-homodyne 64-QAM superchannel transmission with 4% spectral overhead,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3F.4.

M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, “10.3 bits/s/Hz spectral efficiency 54$\times$ 24GBaud PM-128QAM comb-based superchannel transmission using single pilot,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.2.F.4.

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. Eur. Conf. Opt. Commun., 2009, Paper P3.08.

D. Qianet al., “101.7-Tb/s (370 $\times$ 294-Gb/s) PDM-128QAM-OFDM transmission over 3 $\times$ 55-km SSMF using pilot-based phase noise mitigation,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper PDPB5.

S. Chandrasekharet al., “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper Th.3.C.1.

J. Sakaguchi, W. Klaus, B. Puttnam, J. M. D. Mendinueta, Y. Awaji, and N. Wada, “Spectrally-Efficient seed-lightwave-distribution system using space-division-multiplexed distribution channel for multi-core 3-mode-multiplexed DP-64QAM transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper M.1.E.1.

R. Goinget al., “Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100GBd, 32QAM,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.C.3.

H. Huet al., “Adaptive rates of high-spectral-efficiency WDM/SDM channels using PDM-1024-QAM probabilistic shaping,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Tu.1.D.1.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Proc. Opt. Fiber Commun. Conf., 2004, Paper MF78.

D. Somaet al., “10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.A.1.

J.-X. Caiet al., “51.5 Tb/s capacity over 17,107 km in C+L bandwidth using single mode fibers and nonlinearity compensation,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.A.2.

B. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., 2015, Paper PDP3.1.

J. N. Kemalet al., “32QAM WDM transmission using a quantum-dash passively mode-locked laser with resonant feedback,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5C.3.

L. Lundberg, M. Mazur, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Joint carrier recovery for DSP complexity reduction in frequency comb-based superchannel transceivers,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.1.D.3.

F. Buchali, A. Klekamp, L. Schmalen, and D. Tomislav, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.