Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 4,
  • pp. 1197-1203
  • (2018)

Frequency Response Enhancement of Direct-Detection Phase-Sensitive OTDR by Using Frequency Division Multiplexing

Not Accessible

Your library or personal account may give you access

Abstract

The frequency division multiplexing (FDM) technique is first introduced into a direct-detection phase-sensitive OTDR to improve the distributed acoustic sensing performance by using a frequency step sweeping laser source and a dual-pulse heterodyne detection scheme. A raised-cosine-shaped pulse is used to suppress the crosstalk in the FDM technique. By using this technique, a 40-kS/s sampling rate to vibration is realized with a 10-km measurement range, which implies the tradeoff relationship between the frequency response and the measurement range is broken. In the experiment, vibrations with different frequencies are measured to validate the effectiveness of the proposed technique. A 20-kHz frequency response is achieved over a 10-km measurement distance, and the frequency response shows a good flatness with a fluctuation of $\sim$ 0.5 dB.

© 2017 IEEE

PDF Article
More Like This
Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing

Haijun He, Li-Yang Shao, Bin Luo, Zonglei Li, Xihua Zou, Zhiyong Zhang, Wei Pan, and Lianshan Yan
Opt. Express 24(5) 4842-4855 (2016)

Quantitative demodulation of distributed low-frequency vibration based on phase-shifted dual-pulse phase-sensitive OTDR with direct detection

Shuaiqi Liu, Liyang Shao, Fei-Hong Yu, Weijie Xu, Mang I. Vai, Dongrui Xiao, Weihao Lin, Jie Hu, Fang Zhao, Guoqing Wang, Weizhi Wang, Huanhuan Liu, Perry P. Shum, and Feng Wang
Opt. Express 30(6) 10096-10109 (2022)

Long-distance Φ-OTDR with a flexible frequency response based on time division multiplexing

Shuai Li, Zengguang Qin, Zhaojun Liu, Wenchen Yang, Shuai Qu, Zequn Wang, and Yanping Xu
Opt. Express 29(21) 32833-32841 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.