Abstract

We propose and demonstrate a new low-complexity hardware architecture and digital signal processing (DSP) implementation for coherent reception of Nyquist frequency division multiplexed (Nyquist-FDM, digital subcarrier multiplexing) signals in real time. Key to achieve lowest complexity is the combination of an optimized frequency domain and time domain processing block. In the frequency domain processing, we combine subcarrier equalization and timing recovery with a noninteger oversampling ratio of 16/15. In the time domain, we take advantage of polar coordinate processing for the carrier recovery to avoid complex multiplications. The receiver is optimized for flexible operation and allows the adaption of filter coefficients and modulation format between 4QAM, hybrid 4/16QAM, and 16QAM within one clock cycle. The efficiency of the DSP is demonstrated by a real-time coherent receiver implementation on a single FPGA and is experimentally evaluated. Despite of the limited hardware resources, the receiver can detect a 30 GBd Nyquist-FDM signal with four subcarriers and a net data rate of 60 Gb/s (4QAM), 90 Gb/s (4/16QAM), or 120 Gb/s (16QAM) sampled with 32 GSa/s and demodulate one of the subcarriers at a time. Transmission of 300 km through standard single mode fiber is demonstrated with a BER below the soft-decision forward error correction limit.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
  2. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express, vol. 16, pp. 753–791, 2008.
  3. K. Robertset al., “High capacity transport—100G and beyond,” J. Lightw. Technol., vol. 33, no. 3, pp. 563–578, 2015.
  4. H. Zhanget al., “Real-time transmission of 16 Tb/s over 1020 km using 200 Gb/s CFP2-DCO,” Opt. Express, vol. 26, pp. 6943–6948, 2018.
  5. K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.
  6. J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .
  7. D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.
  8. N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.
  9. A. Shahpariet al., “Coherent access: A review,” J. Lightw. Technol., vol. 35, no. 4, pp. 1050–1058, 2017.
  10. F. Frey, R. Elschner, and J. K. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. ITG-Symp. Photon. Netw., 2017, pp. 1–8.
  11. D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.
  12. J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.
  13. B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111, 2014.
  14. R. Schmogrowet al., “Nyquist frequency division multiplexing for optical communications,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, May 6–11, 2012, pp. 1–2.
  15. J. D. McNicolet al., “Single-carrier versus sub-carrier bandwidth considerations for coherent optical systems,” in Proc. SPIE, 2011, vol. 7960, pp. 796006-1–796006-11.
  16. M. Mitchellet al., “Optical integration and multi-carrier solutions for 100G and beyond,” Opt. Fiber Technol., vol. 17, pp. 412–420, 2011.
  17. M. Qiuet al., “Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems,” Opt. Express, vol. 22, pp. 18770–18777, 2014.
  18. P. Poggioliniet al., “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol., vol. 34, no. 8, pp. 1872–1885, 2016.
  19. L. B. Du and A. J. Lowery, “Optimizing the subcarrier granularity of coherent optical communications systems,” Opt. Express, vol. 19, pp. 8079–8084, 2011.
  20. P. C. Schindleret al., “Full flex-grid asynchronous multiplexing demonstrated with Nyquist pulse-shaping,” Opt. Express, vol. 22, pp. 10923–10937, 2014.
  21. D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.
  22. T. Rahmanet al., “Digital subcarrier multiplexed hybrid QAM for data-rate flexibility and ROADM filtering tolerance,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.
  23. G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.
  24. B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .
  25. X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.
  26. N. Kanedaet al., “Field demonstration of 100-Gb/s real-time coherent optical OFDM detection,” J. Lightw. Technol., vol. 33, no. 7, pp. 1365–1372, 2015.
  27. A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.
  28. L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.
  29. N. Kikuchi, T. Yano, and R. Hirai, “FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection,” J. Lightw. Technol., vol. 34, no. 8, pp. 1762–1769, 2016.
  30. B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.
  31. B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .
  32. B. Baeuerleet al., “Multi-format carrier recovery for coherent real-time reception with processing in polar coordinates,” Opt. Express, vol. 24, pp. 25629–25640, 2016.
  33. A. V. Oppenheim, Discrete-Time Signal Processing. Chennai, India: Pearson Education India, 1999.
  34. M. Borgerding, “Turning overlap-save into a multiband mixing, downsampling filter bank,” IEEE Signal Process. Mag., vol. 23, no. 2, pp. 158–161, 2006.
  35. P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.
  36. 2017. [Online]. Available: www.spiral.net
  37. J. E. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959.
  38. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express, vol. 16, pp. 804–817, 2008.
  39. A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .
  40. H. Silverman, “An introduction to programming the Winograd Fourier transform algorithm (WFTA),” IEEE Trans. Acoust., Speech, Signal Process., vol. 25, no. 2, pp. 152–165, 1977.
  41. S. Winograd, “On computing the discrete Fourier transform,” Math. Comput., vol. 32, pp. 175–199, 1978.
  42. K. Li, W. Zheng, and K. Li, “A fast algorithm with less operations for length-N = q*2^m DFTs,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 673–683, 2015.
  43. U. Mengali, Synchronization Techniques for Digital Receivers. New York, NY, USA: Springer, 2013.
  44. I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 176–178, 2010.
  45. T. Nakagawaet al., “Wide-range and fast-tracking frequency offset estimator for optical coherent receivers,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.
  46. J. C. M. Dinizet al., “Simple feed-forward wide-range frequency offset estimator for optical coherent receivers,” Opt. Express, vol. 19, pp. B323–B328, 2011.
  47. B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192, 2010.
  48. M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express, vol. 19, pp. 12789–12798, 2011.
  49. M. Paskov, D. Millar, and K. Parsons, “A fully-blind fractionally-oversampled frequency domain adaptive equalizer,” in Proc. Opt. Fiber Commun. Conf. Exhib., Vancouver, BC, Canada, 2016, pp. 1–3.

2018 (3)

H. Zhanget al., “Real-time transmission of 16 Tb/s over 1020 km using 200 Gb/s CFP2-DCO,” Opt. Express, vol. 26, pp. 6943–6948, 2018.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

2017 (2)

A. Shahpariet al., “Coherent access: A review,” J. Lightw. Technol., vol. 35, no. 4, pp. 1050–1058, 2017.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

2016 (5)

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

P. Poggioliniet al., “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol., vol. 34, no. 8, pp. 1872–1885, 2016.

N. Kikuchi, T. Yano, and R. Hirai, “FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection,” J. Lightw. Technol., vol. 34, no. 8, pp. 1762–1769, 2016.

B. Baeuerleet al., “Multi-format carrier recovery for coherent real-time reception with processing in polar coordinates,” Opt. Express, vol. 24, pp. 25629–25640, 2016.

2015 (3)

N. Kanedaet al., “Field demonstration of 100-Gb/s real-time coherent optical OFDM detection,” J. Lightw. Technol., vol. 33, no. 7, pp. 1365–1372, 2015.

K. Robertset al., “High capacity transport—100G and beyond,” J. Lightw. Technol., vol. 33, no. 3, pp. 563–578, 2015.

K. Li, W. Zheng, and K. Li, “A fast algorithm with less operations for length-N = q*2^m DFTs,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 673–683, 2015.

2014 (3)

2013 (1)

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

2012 (1)

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.

2011 (4)

2010 (2)

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192, 2010.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 176–178, 2010.

2008 (2)

2006 (1)

M. Borgerding, “Turning overlap-save into a multiband mixing, downsampling filter bank,” IEEE Signal Process. Mag., vol. 23, no. 2, pp. 158–161, 2006.

1978 (1)

S. Winograd, “On computing the discrete Fourier transform,” Math. Comput., vol. 32, pp. 175–199, 1978.

1977 (1)

H. Silverman, “An introduction to programming the Winograd Fourier transform algorithm (WFTA),” IEEE Trans. Acoust., Speech, Signal Process., vol. 25, no. 2, pp. 152–165, 1977.

1959 (1)

J. E. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959.

Agazzi, O. E.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Aguirre, A.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Awadalla, A.

D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

Baeuerle, B.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

B. Baeuerleet al., “Multi-format carrier recovery for coherent real-time reception with processing in polar coordinates,” Opt. Express, vol. 24, pp. 25629–25640, 2016.

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .

B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .

Barros, D. J. F.

Bayvel, P.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

Bilal, S. M.

G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

Birk, T.

A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.

Boesser, J.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

Bonjour, R.

B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .

Borgerding, M.

M. Borgerding, “Turning overlap-save into a multiband mixing, downsampling filter bank,” IEEE Signal Process. Mag., vol. 23, no. 2, pp. 158–161, 2006.

Bosco, G.

G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

Castrillón, M. A.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Chen, F.

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

Diniz, J. C. M.

Dochhan, A.

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .

Dornbierer, E.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

Du, L. B.

Eiselt, N.

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .

Elbers, J.-P.

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .

Elschner, R.

F. Frey, R. Elschner, and J. K. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. ITG-Symp. Photon. Netw., 2017, pp. 1–8.

Eppenberger, M.

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .

Faruk, M. S.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 176–178, 2010.

Fischer, J. K.

F. Frey, R. Elschner, and J. K. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. ITG-Symp. Photon. Netw., 2017, pp. 1–8.

Forghieri, F.

G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

Franchetti, F.

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.

Frey, F.

F. Frey, R. Elschner, and J. K. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. ITG-Symp. Photon. Netw., 2017, pp. 1–8.

Geyer, J. C.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Givehchi, M.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Grießer, H.

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .

Guowei, G.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

Hilgendorf, R.

A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.

Hillerkuss, D.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .

Hirai, R.

N. Kikuchi, T. Yano, and R. Hirai, “FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection,” J. Lightw. Technol., vol. 34, no. 8, pp. 1762–1769, 2016.

Hoe, J. C.

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.

Hueda, M. R.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Huo, J.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

Ip, E.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 176–178, 2010.

Josten, A.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .

Kahn, J. M.

Kaneda, N.

N. Kanedaet al., “Field demonstration of 100-Gb/s real-time coherent optical OFDM detection,” J. Lightw. Technol., vol. 33, no. 7, pp. 1365–1372, 2015.

Karar, A.

D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

Kikuchi, K.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express, vol. 19, pp. 12789–12798, 2011.

Kikuchi, N.

N. Kikuchi, T. Yano, and R. Hirai, “FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection,” J. Lightw. Technol., vol. 34, no. 8, pp. 1762–1769, 2016.

Krause, D.

D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

Lau, A. P. T.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express, vol. 16, pp. 753–791, 2008.

Lavery, D.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

Leuthold, J.

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .

Li, F.

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

Li, K.

K. Li, W. Zheng, and K. Li, “A fast algorithm with less operations for length-N = q*2^m DFTs,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 673–683, 2015.

K. Li, W. Zheng, and K. Li, “A fast algorithm with less operations for length-N = q*2^m DFTs,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 673–683, 2015.

Li, X.

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

Lowery, A. J.

Lu, C.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

Maher, R.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

Matsuda, K.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Matsumoto, R.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

McNicol, J. D.

J. D. McNicolet al., “Single-carrier versus sub-carrier bandwidth considerations for coherent optical systems,” in Proc. SPIE, 2011, vol. 7960, pp. 796006-1–796006-11.

Meltsin, M.

A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.

Mengali, U.

U. Mengali, Synchronization Techniques for Digital Receivers. New York, NY, USA: Springer, 2013.

Milder, P.

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.

Millar, D.

M. Paskov, D. Millar, and K. Parsons, “A fully-blind fractionally-oversampled frequency domain adaptive equalizer,” in Proc. Opt. Fiber Commun. Conf. Exhib., Vancouver, BC, Canada, 2016, pp. 1–3.

Millar, D. S.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

Mitchell, M.

M. Mitchellet al., “Optical integration and multi-carrier solutions for 100G and beyond,” Opt. Fiber Technol., vol. 17, pp. 412–420, 2011.

Miura, H.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Mo, L.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

Morero, D. A.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Motoshima, K.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Nakagawa, T.

T. Nakagawaet al., “Wide-range and fast-tracking frequency offset estimator for optical coherent receivers,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Nespola, A.

G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

Nielsen, T.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Ning, D.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

Oppenheim, A. V.

A. V. Oppenheim, Discrete-Time Signal Processing. Chennai, India: Pearson Education India, 1999.

Orbah, M.

A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.

Parsons, K.

M. Paskov, D. Millar, and K. Parsons, “A fully-blind fractionally-oversampled frequency domain adaptive equalizer,” in Proc. Opt. Fiber Commun. Conf. Exhib., Vancouver, BC, Canada, 2016, pp. 1–3.

Paskov, M.

M. Paskov, D. Millar, and K. Parsons, “A fully-blind fractionally-oversampled frequency domain adaptive equalizer,” in Proc. Opt. Fiber Commun. Conf. Exhib., Vancouver, BC, Canada, 2016, pp. 1–3.

Pillai, B. S. G.

B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111, 2014.

Poggiolini, P.

P. Poggioliniet al., “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol., vol. 34, no. 8, pp. 1872–1885, 2016.

G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

Püschel, M.

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.

Qingsong, X.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

Qiu, M.

Rafique, D.

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .

Rahman, T.

T. Rahmanet al., “Digital subcarrier multiplexed hybrid QAM for data-rate flexibility and ROADM filtering tolerance,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

Rasmussen, C.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Roberts, K.

K. Robertset al., “High capacity transport—100G and beyond,” J. Lightw. Technol., vol. 33, no. 3, pp. 563–578, 2015.

Savory, S. J.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 176–178, 2010.

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express, vol. 16, pp. 804–817, 2008.

Schindler, P. C.

Schmogrow, R.

R. Schmogrowet al., “Nyquist frequency division multiplexing for optical communications,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, May 6–11, 2012, pp. 1–2.

Shah, B.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Shahpari, A.

A. Shahpariet al., “Coherent access: A review,” J. Lightw. Technol., vol. 35, no. 4, pp. 1050–1058, 2017.

Shiyi, C.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

Silverman, H.

H. Silverman, “An introduction to programming the Winograd Fourier transform algorithm (WFTA),” IEEE Trans. Acoust., Speech, Signal Process., vol. 25, no. 2, pp. 152–165, 1977.

Spinnler, B.

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192, 2010.

Sun, H. H.

D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

Suzuki, N.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Thomsen, B. C.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

Tolmachev, A.

A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.

Volder, J. E.

J. E. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959.

Winograd, S.

S. Winograd, “On computing the discrete Fourier transform,” Math. Comput., vol. 32, pp. 175–199, 1978.

Wu, K.-T.

D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

Xia, Y.

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

Xiao, X.

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

Yano, T.

N. Kikuchi, T. Yano, and R. Hirai, “FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection,” J. Lightw. Technol., vol. 34, no. 8, pp. 1762–1769, 2016.

Yu, C.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

Yu, J.

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

Zhang, H.

Zheng, W.

K. Li, W. Zheng, and K. Li, “A fast algorithm with less operations for length-N = q*2^m DFTs,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 673–683, 2015.

Zhiyong, F.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

Zhong, K.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

Zhou, X.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

ACM Trans. Des. Autom. Electron. Syst. (1)

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware for linear digital signal processing transforms,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, pp. 1–33, 2012.

Appl. Sci. (1)

A. Josten, B. Baeuerle, E. Dornbierer, J. Boesser, D. Hillerkuss, and J. Leuthold, “Modified godard timing recovery for non integer oversampling receivers,” Appl. Sci., vol. 7, 2017, Art. no. .

IEEE J. Sel. Topics Quantum Electron. (1)

B. Spinnler, “Equalizer design and complexity for digital coherent receivers,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1180–1192, 2010.

IEEE Photon. Technol. Lett. (1)

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 176–178, 2010.

IEEE Signal Process. Mag. (1)

M. Borgerding, “Turning overlap-save into a multiband mixing, downsampling filter bank,” IEEE Signal Process. Mag., vol. 23, no. 2, pp. 158–161, 2006.

IEEE Trans. Acoust., Speech, Signal Process. (1)

H. Silverman, “An introduction to programming the Winograd Fourier transform algorithm (WFTA),” IEEE Trans. Acoust., Speech, Signal Process., vol. 25, no. 2, pp. 152–165, 1977.

IEEE Trans. Electron. Comput. (1)

J. E. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959.

IEEE Trans. Signal Process. (1)

K. Li, W. Zheng, and K. Li, “A fast algorithm with less operations for length-N = q*2^m DFTs,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 673–683, 2015.

J. Lightw. Technol. (11)

N. Kanedaet al., “Field demonstration of 100-Gb/s real-time coherent optical OFDM detection,” J. Lightw. Technol., vol. 33, no. 7, pp. 1365–1372, 2015.

N. Kikuchi, T. Yano, and R. Hirai, “FPGA prototyping of single-polarization 112-Gb/s transceiver for optical multilevel signaling with intensity and delay detection,” J. Lightw. Technol., vol. 34, no. 8, pp. 1762–1769, 2016.

P. Poggioliniet al., “Analytical and experimental results on system maximum reach increase through symbol rate optimization,” J. Lightw. Technol., vol. 34, no. 8, pp. 1872–1885, 2016.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

K. Robertset al., “High capacity transport—100G and beyond,” J. Lightw. Technol., vol. 33, no. 3, pp. 563–578, 2015.

D. Lavery, R. Maher, D. S. Millar, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Digital coherent receivers for long-reach optical access networks,” J. Lightw. Technol., vol. 31, no. 4, pp. 609–620, 2013.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

A. Shahpariet al., “Coherent access: A review,” J. Lightw. Technol., vol. 35, no. 4, pp. 1050–1058, 2017.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightw. Technol., vol. 36, no. 2, pp. 377–400, 2018.

D. A. Morero, M. A. Castrillón, A. Aguirre, M. R. Hueda, and O. E. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

B. S. G. Pillaiet al., “End-to-end energy modeling and analysis of long-haul coherent transmission systems,” J. Lightw. Technol., vol. 32, no. 18, pp. 3093–3111, 2014.

Math. Comput. (1)

S. Winograd, “On computing the discrete Fourier transform,” Math. Comput., vol. 32, pp. 175–199, 1978.

Opt. Express (9)

Opt. Fiber Technol. (1)

M. Mitchellet al., “Optical integration and multi-carrier solutions for 100G and beyond,” Opt. Fiber Technol., vol. 17, pp. 412–420, 2011.

Other (19)

R. Schmogrowet al., “Nyquist frequency division multiplexing for optical communications,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, May 6–11, 2012, pp. 1–2.

J. D. McNicolet al., “Single-carrier versus sub-carrier bandwidth considerations for coherent optical systems,” in Proc. SPIE, 2011, vol. 7960, pp. 796006-1–796006-11.

J. C. Geyer, C. Rasmussen, B. Shah, T. Nielsen, and M. Givehchi, “Power efficient coherent transceivers,” in Proc. Eur. Conf. Opt. Commun., 2016, pp. 1–3.

J.-P. Elbers, N. Eiselt, A. Dochhan, D. Rafique, and H. Grießer, “PAM4 vs Coherent for DCI Applications,” in Proc. Signal Process. Photon. Commun., New Orleans, LA, USA, 2017, pp. 1–3, Art. no. .

F. Frey, R. Elschner, and J. K. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. ITG-Symp. Photon. Netw., 2017, pp. 1–8.

A. V. Oppenheim, Discrete-Time Signal Processing. Chennai, India: Pearson Education India, 1999.

2017. [Online]. Available: www.spiral.net

B. Baeuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receiver for nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

B. Baeuerle, A. Josten, M. Eppenberger, D. Hillerkuss, and J. Leuthold, “FPGA-based real-time receivers for Nyquist-FDM,” in Proc. Signal Process. Photon. Commun.New Orleans, LA, USA, Jul. 24, 2017, pp. 1–3, Art. no. .

A. Tolmachev, M. Meltsin, R. Hilgendorf, M. Orbah, and T. Birk, “Real-time hardware demonstration of 180 Gbps DFT-S OFDM receiver based on digital sub-banding,” in Proc. Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sep. 18–22, 2016, pp. 1–3.

L. Mo, D. Ning, X. Qingsong, G. Guowei, F. Zhiyong, and C. Shiyi, “A 100-Gb/s real-time burst-mode coherent PDM-DQPSK receiver,” in Proc. Eur. Conf. Exhib. Opt. Commun., London, U.K., Sep. 22–26, 2013, pp. 1–3.

D. Krause, A. Awadalla, A. Karar, H. H. Sun, and K.-T. Wu, “Design considerations for a digital subcarrier coherent optical modem,” in Proc. Opt. Fiber Commun. Conf. Exhib., Los Angeles, CA, USA, Mar. 19–23, 2017, pp. 1–3.

T. Rahmanet al., “Digital subcarrier multiplexed hybrid QAM for data-rate flexibility and ROADM filtering tolerance,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

G. Bosco, S. M. Bilal, A. Nespola, P. Poggiolini, and F. Forghieri, “Impact of the transmitter IQ-Skew in multi-subcarrier coherent optical systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, USA, Mar. 20–24, 2016, pp. 1–3.

B. Baeuerle, A. Josten, R. Bonjour, D. Hillerkuss, and J. Leuthold, “Effect of transmitter impairments on Nyquist-FDM signals with increasing sub-band granularity,” in Proc. Signal Process. Photon. Commun., Vancouver, BC, Canada, Jul. 18–20, 2016, pp. 1–3, Art. no. .

X. Xiao, F. Li, J. Yu, X. Li, Y. Xia, and F. Chen, “100-Gb/s single-band real-time coherent optical DP-16QAM-OFDM transmission and reception,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–13, 2014, pp. 1–3.

M. Paskov, D. Millar, and K. Parsons, “A fully-blind fractionally-oversampled frequency domain adaptive equalizer,” in Proc. Opt. Fiber Commun. Conf. Exhib., Vancouver, BC, Canada, 2016, pp. 1–3.

U. Mengali, Synchronization Techniques for Digital Receivers. New York, NY, USA: Springer, 2013.

T. Nakagawaet al., “Wide-range and fast-tracking frequency offset estimator for optical coherent receivers,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.