Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 23,
  • pp. 5424-5431
  • (2018)

Nonlinear Signal-to-Noise Ratio Estimation in Coherent Optical Fiber Transmission Systems Using Artificial Neural Networks

Not Accessible

Your library or personal account may give you access

Abstract

For high symbol rate fiber optic networks, the estimation and monitoring of time varying link performance parameters are critical for delivering optimal network performance. In this paper, a method is presented for estimating the nonlinear signal-to-noise ratio ${\text{(SNR}}_{{\text{nl}}})$ using an artificial neural network (ANN). The ANN is trained with the fiber nonlinearity induced amplitude noise covariance and phase noise correlation extracted from received symbols. The data used for training are simulation results for a 34.5 Gbaud dual polarization 16-ary quadrature amplitude modulation signal transmitted over a wide range of link configurations with varying fiber types and number of wavelength division multiplexed channels. Using 734 input-output sets, high accuracy is demonstrated for training, testing, and validation for simulation data with a maximum normalized root-mean-square error of 0.37% for ${\text{SNR}}_{{\text{nl}}}$ . Validation using experimental data exhibits less than 0.25 dB deviation from the true ${\text{SNR}}_{{\text{nl}}}$ for estimates obtained with varying fiber length and launch power.

© 2018 IEEE

PDF Article
More Like This
Joint nonlinear optical signal-to-noise ratio estimation and modulation format identification based on constellation-points trajectory information and multitask 1DCNN for WDM systems

Zhiguo Wang, Chenglin Bai, Lishan Yang, Xinyu Chi, Peng Qin, Xueyuan Luo, Hengying Xu, and Peiyun Ge
Appl. Opt. 61(36) 10744-10754 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved