Abstract

In this paper, dispersion relations (DRs) of photonic crystals (PhCs) are computed by multilayer perceptron (MLP) and extreme learning machine (ELM) artificial neural networks (ANNs). Bi- and tri-dimensional optimized structures presenting distinct DRs and photonic band gaps (PBGs) were selected for case studies. Optical properties of a set of PhCs with similar geometries and different dimensions were calculated by an electromagnetic solver in order to provide input data for ANN training and testing. We demonstrate that simple- and fast-training ANN models are capable of providing accurate DRs’ curves in a very short time.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription