Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 18,
  • pp. 3941-3948
  • (2018)

Pulse-Overlapping Super-Nyquist WDM System

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a pulse-overlapping super-Nyquist (Pol-SN) wavelength-division multiplexing (WDM) scheme is proposed to improve spectral efficiency of coherent optical transmission. In this scheme, two tributaries of polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK) signals at the transmitter, carried by the same wavelength, are grouped together to allow for pulse overlapping in the time domain. Then, several wavelength channels are packed tightly in the frequency domain to form a super-Nyquist WDM system. At the receiver, three partial-response detection schemes are investigated and compared: 1) constant modulus algorithm (CMA) + duobinary shaping + maximum likelihood sequence estimation (MLSE); 2) duobinary shaping + multimodulus algorithm (MMA) + MLSE; and 3) channel shortening filter. Among these schemes, the easy-to-implement duobinary shaping +MMA + MLSE is selected by virtue of its best performance and lowest complexity. A 224-Gb/s Pol-SN PDM-QPSK system is investigated through numerical simulations. The simulation results show that the channel spacing of the 224 Gb/s Pol-SN PDM-QPSK system can be reduced to 20 GHz (11.2 bit/s/Hz SE) with 7% overhead hard-decision forward-error correction (HD-FEC, 3.8 × 10−3). At 26-GHz channel spacing, Pol-SN PDM-QPSK signals show 5.5-dB OSNR improvement, as compared with the signals of 224-Gb/s super-Nyquist PDM-16QAM. The simulation results also show that 224-Gb/s Pol-SN PDM-QPSK system, with 20-GHz spacing, can transmit up to 1000-km SSMF with 7% overhead HD-FEC.

© 2018 IEEE

PDF Article
More Like This
Adaptive quadrature-polybinary detection in super-Nyquist WDM systems

Sai Chen, Chongjin Xie, and Jie Zhang
Opt. Express 23(6) 7933-7939 (2015)

Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping

Cheng Xu, Guanjun Gao, Sai Chen, Jie Zhang, Ming Luo, Rong Hu, and Qi Yang
Opt. Express 24(23) 26678-26686 (2016)

Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal

Junwen Zhang, Jianjun Yu, and Nan Chi
Opt. Express 21(25) 31212-31217 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved