Abstract

On-chip third harmonic generation (THG) and its inverse process, namely, the generation of entangled triplet photons with Greenberger–Horne–Zeilinger state, have attracted much interest in the last decade. To enhance the conversion efficiency or photon creation rate in optical waveguides, phase matching is a crucial condition, which must be satisfied. However, material dispersion usually prevents the phase matching condition between input pump and generated radiation when they are both guided in the fundamental modes. In this paper, a dielectric-loaded waveguide based on fundamental mode photon–plasmon coupling is proposed for efficient THG and triplet photon generation (TPG). Leveraging on the unique dispersion properties of transparent conductive oxide, the third harmonic radiation can be guided by the conventional photonic mode in the near-infrared, while the pump frequency is confined by a surface plasmon polariton mode in the mid-infrared. According to our simulations, the THG efficiency and TPG rate can achieve ∼ ${\text{10}}^{- 4}$ and 32 Hz, respectively. The proposed waveguide can be a promising platform for all-optical and quantum signal processing.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription