Abstract

Due to severe inter-cell interference (ICI), the signal-to- interference-and-noise ratio (SINR) suffers from very significant fluctuation in indoor multi-cell visible light communication (VLC) systems, which greatly limits the overall system performance. In this paper, we propose and evaluate a generalized angle diversity receiver (ADR) structure to reduce SINR fluctuation in indoor multi-cell VLC systems. The generalized ADR consists of one top detector and multiple inclined side detectors. In an indoor multi-cell VLC system using the generalized ADR, the inclination angle of the side detectors is optimized in order to minimize the SINR fluctuation over the receiving plane, where the impact of receiver random rotation is considered. An optimized ADR with different numbers of detectors is analyzed with different LED layouts and diversity combining techniques in a typical indoor environment. Analytical results show that the SINR fluctuation is gradually reduced when more detectors are equipped in the optimized ADR. In an indoor two-cell VLC system, much more significant SINR fluctuation reduction is achieved by using select-best combining (SBC). However, nearly the same SINR fluctuations are obtained in an indoor four-cell VLC system when using SBC and maximal-ratio combining (MRC). By applying the optimized ADR, up to 15.9 and 32.4-dB SINR fluctuation reductions can be achieved in comparison to a conventional single-element receiver (SER) in indoor two-cell and four-cell VLC systems, respectively.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription