Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 14,
  • pp. 2912-2919
  • (2018)

Terabit Faster-Than-Nyquist PDM 16-QAM WDM Transmission With a Net Spectral Efficiency of 7.96 b/s/Hz

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we experimentally demonstrate a 1.28 Tb/s faster-than-Nyquist (FTN) wavelength division multiplexing (WDM) system with polarization division multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM) signal and coherent detection. Note that intersymbol interference (ISI) and intercarrier interference (ICI) are two major problems in FTN-WDM systems. In our experiment, we use a digital brick-wall filter at the transmitter to reduce the signal bandwidth and fit the FTN-WDM channel spacing. In doing so, the ICI can be mostly suppressed when aggregating the WDM channels. The aggressive filtering induced ISI is compensated based on duobinary signal processing at the receiver. Through numerical simulation, we evaluate the robustness of the receiver-side duobinary signal processing against bandwidth truncation ratio of the digital brick-wall filter, the ICI from neighboring channels, and laser phase noise. The FTN WDM transmission is based on five-channel 32 Gbaud PDM 16-QAM signal with 29 GHz channel spacing. The gross data capacity is 1.28 Tb/s (5 × 256 Gb/s). After 80 km standard single-mode fiber transmission, the bit-error rates of the five WDM channels are all below than 7% hard-decision forward error correction threshold of 4.5 × 10−3. The net bit rate is 1.15 Tb/s and the net optical spectral efficiency achieves a record of 7.96 b/s/Hz for PDM 16-QAM format. To our best knowledge, our work is the first report of Terabit FTN-WDM system with high-order modulation of PDM 16-QAM signal.

© 2018 IEEE

PDF Article
More Like This
First experimental demonstration of faster-than-Nyquist PDM-16QAM transmission over standard single mode fiber

Zhuopeng Xiao, B. Li, Songnian Fu, L. Deng, M. Tang, and Deming Liu
Opt. Lett. 42(6) 1072-1075 (2017)

Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4b/s/Hz

Xinying Li, Ze Dong, Jianjun Yu, Jianguo Yu, and Nan Chi
Opt. Express 21(7) 8808-8814 (2013)

Joint timing recovery and adaptive equalization based on training sequences for PM-16QAM faster-than-Nyquist WDM systems

Jialin You, Tao Yang, Yongben Wang, Weiqin Zhou, Liqian Wang, and Xue Chen
Opt. Express 31(20) 33421-33434 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.