Abstract

We investigate the feasibility of implementing a mobile fronthaul network (MFN) based on the radio-over-fiber (RoF) technology for the fifth generation wireless communication systems cost effectively by using either directly modulated lasers (DMLs) or electroabsorption modulated lasers (EMLs) operating in the 1.55-μm window. The results show that the performance of the RoF-based MFN implemented by using DMLs is primarily limited by the composite second-order (CSO) distortions arising from the interplay between the DML's adiabatic chirp and fiber's chromatic dispersion. Thus, when we implement the RoF-based MFN by using the currently available commercial DML, its reach could be limited to ∼5 km due to the CSO distortions. To increase this reach, we can utilize the DML having a very small adiabatic chirp (or the optical dispersion compensation or CSO cancelation technique). On the other hand, when we implement the RoF-based MFN by using EML, its performance is limited mostly by the relatively poor linearity and low output power of EML rather than the chirp. For example, if we increase the optical modulation index to compensate for the low output power of EML, the distortions caused by the EML's nonlinear transfer curve can also be increased. Thus, for the use in the RoF-based MFN, it would be highly desirable to increase the output power of EML as much as possible. For a demonstration, we successfully transmit 24 100-MHz-bandwidth filtered orthogonal-frequency-division-multiplexing signals over 20 km of the standard single-mode fiber by using an EML transmitter with 7-dBm output power.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.
  2. X. Liu, H. Zeng, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent data rate and 2-μs processing delay,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.3.
  3. F. Effenberger and X. Liu, “Power-efficient method for IM-DD optical transmission of multiple OFDM signals,” Opt. Express, vol. 23, no. 10, pp. 13571–13579, 2015.
  4. C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Linearity improvement of direct-modulated multi-IF-over-fiber LTE-A mobile fronthaul link using shunt diode predistorter,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.4.
  5. X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.
  6. J. Zhang et al., “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proc. Opt. Fiber. Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper Tu2B.3.
  7. B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightw. Technol., vol. 35, no. 2, pp. 145–151, 2017.
  8. M. Sung, S. Cho, H. Chung, S. Kim, and J. Lee, “Investigation of transmission performance in multi-IFoF based mobile fronthaul with dispersion-induced intermixing noise mitigation,” Opt. Express, vol. 25, no. 8, pp. 9346–9357, 2017.
  9. B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express, vol. 25, no. 11, pp. 12152–12160, 2017.
  10. P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, Paper W.4.P1.SC7.72.
  11. L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.
  12. J. Zhang et al., “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996, 2017.
  13. P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over IFoF system,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.4.
  14. M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.
  15. S. Ishimura et al., “Simultaneous transmission aggregated microwave and millimeter-wave signals over fiber with parallel IM/PM transmitter for mobile fronthaul links,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, Sep. 17–21, 2017, Paper Tu.1.B.5.
  16. “IMT vision frame work and overall objectives of the future development of IMT for 2020 and beyond,” ITU Radiocommunication, Geneva, Switzerland, ITU-R Recommendation M.2083-0, 2015.
  17. X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.
  18. M. Abdoli, J. Ming Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proc. Signal Process. Adv. Wireless Commun., 2015, pp. 66–70.
  19. “Study on new radio (NR) access technology,” 3GPP, Sophia Antipolis Cedex, France, 3GPP TR 38.912 version 14.0.0, 2017.
  20. “Base station (BS) radio transmission and reception,” 3GPP, Sophia Antipolis Cedex, France, 3GPP TS 36.104 version 14.3.0, 2017.
  21. T. Koch and R. Link, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, no. 10, pp. 613–615, 1986.
  22. S. H. Bae, H. Kim, and Y. C. Chung, “Transmission of 51.56 Gb/s OOK signal using 1.55-μm directly modulated laser and duobinary electrical equalizer,” Opt. Express, vol. 24, no. 20, pp. 22555–22562, 2016.
  23. L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.
  24. D. Che, F. Yuan, and W. Shieh, “Towards high-order modulation using complex modulation of semiconductor lasers,” Opt. Express, vol. 24, no. 6, pp. 6644–6649, 2016.
  25. R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. IEEE Int. Conf. Elect. Comput. Eng., 2006, pp. 408–411.
  26. G. Santella and F. Mazzenga, “A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 142–151, 1998.
  27. B. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.
  28. G. P. Agrawal, “Optical transmitters,” in Fiber-Optic Fiber Communication Systems, 4th ed.Hoboken, NJ, USA: Wiley, 2010.
  29. K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.
  30. B. Hraimel and X. Zhang, “Performance improvement of radio-over-fiber links using mixed-polarization electro-absorption modulators,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3239–3248, 2011.
  31. T. Iwai, K. Sato, and K. Suto, “Signal distortion and noise in AM-SCM transmission systems employing the feedforward linearized MQW-EA external modulator,” J. Lightw. Technol., vol. 13, no. 8, pp. 1606–1612, 1995.
  32. Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.
  33. C. H. Cox, “Distortion in links,” in Analog Optical Links Theory and Practice. Cambridge, U.K.: Cambridge Univ. Press, 2004, pp. 201–261.
  34. X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

2017 (4)

B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightw. Technol., vol. 35, no. 2, pp. 145–151, 2017.

M. Sung, S. Cho, H. Chung, S. Kim, and J. Lee, “Investigation of transmission performance in multi-IFoF based mobile fronthaul with dispersion-induced intermixing noise mitigation,” Opt. Express, vol. 25, no. 8, pp. 9346–9357, 2017.

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express, vol. 25, no. 11, pp. 12152–12160, 2017.

J. Zhang et al., “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996, 2017.

2016 (2)

2015 (1)

2011 (1)

B. Hraimel and X. Zhang, “Performance improvement of radio-over-fiber links using mixed-polarization electro-absorption modulators,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3239–3248, 2011.

2010 (1)

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

1998 (2)

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

G. Santella and F. Mazzenga, “A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 142–151, 1998.

1996 (1)

L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.

1995 (1)

T. Iwai, K. Sato, and K. Suto, “Signal distortion and noise in AM-SCM transmission systems employing the feedforward linearized MQW-EA external modulator,” J. Lightw. Technol., vol. 13, no. 8, pp. 1606–1612, 1995.

1992 (2)

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

B. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.

1986 (1)

T. Koch and R. Link, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, no. 10, pp. 613–615, 1986.

Abdoli, M.

M. Abdoli, J. Ming Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proc. Signal Process. Adv. Wireless Commun., 2015, pp. 66–70.

Agrawal, G. P.

G. P. Agrawal, “Optical transmitters,” in Fiber-Optic Fiber Communication Systems, 4th ed.Hoboken, NJ, USA: Wiley, 2010.

Bae, S. H.

Bi, M.

M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.

Bjerkan, L.

L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.

Bodeep, G. E.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

Chand, N.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.

Chang, G. K.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.

Chang, W. S.

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

Chard, N.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.

Che, D.

Chen, L.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

Cheng, L.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.

Cho, S.

Cho, S. H.

C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Linearity improvement of direct-modulated multi-IF-over-fiber LTE-A mobile fronthaul link using shunt diode predistorter,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.4.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

Chraplyvy, A. R.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

Chung, H.

Chung, H. S.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Linearity improvement of direct-modulated multi-IF-over-fiber LTE-A mobile fronthaul link using shunt diode predistorter,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.4.

Chung, Y. C.

Cowan, G. E. R.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

Cox, C. H.

C. H. Cox, “Distortion in links,” in Analog Optical Links Theory and Practice. Cambridge, U.K.: Cambridge Univ. Press, 2004, pp. 201–261.

Darcie, T. E.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

Dat, P.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, Paper W.4.P1.SC7.72.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over IFoF system,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.4.

Derosier, R. M.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

Doo, K. H.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

Effenberger, F.

F. Effenberger and X. Liu, “Power-efficient method for IM-DD optical transmission of multiple OFDM signals,” Opt. Express, vol. 23, no. 10, pp. 13571–13579, 2015.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.

X. Liu, H. Zeng, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent data rate and 2-μs processing delay,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.3.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.

Hafskjær, L.

L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.

Hakki, B.

B. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.

Han, C.

C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Linearity improvement of direct-modulated multi-IF-over-fiber LTE-A mobile fronthaul link using shunt diode predistorter,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.4.

Hodiak, J. H.

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

Hraimel, B.

B. Hraimel and X. Zhang, “Performance improvement of radio-over-fiber links using mixed-polarization electro-absorption modulators,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3239–3248, 2011.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

Hu, W.

M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.

Ishimura, S.

S. Ishimura et al., “Simultaneous transmission aggregated microwave and millimeter-wave signals over fiber with parallel IM/PM transmitter for mobile fronthaul links,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, Sep. 17–21, 2017, Paper Tu.1.B.5.

Islam, A. R.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. IEEE Int. Conf. Elect. Comput. Eng., 2006, pp. 408–411.

Iwai, T.

T. Iwai, K. Sato, and K. Suto, “Signal distortion and noise in AM-SCM transmission systems employing the feedforward linearized MQW-EA external modulator,” J. Lightw. Technol., vol. 13, no. 8, pp. 1606–1612, 1995.

Jia, M.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

Jia, W.

M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.

Kanno, A.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over IFoF system,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.4.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, Paper W.4.P1.SC7.72.

Kawanishi, T.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, Paper W.4.P1.SC7.72.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over IFoF system,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.4.

Kim, B. G.

B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightw. Technol., vol. 35, no. 2, pp. 145–151, 2017.

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser,” Opt. Express, vol. 25, no. 11, pp. 12152–12160, 2017.

Kim, H.

Kim, S.

Koch, T.

T. Koch and R. Link, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, no. 10, pp. 613–615, 1986.

Lee, J.

Lee, J. H.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Linearity improvement of direct-modulated multi-IF-over-fiber LTE-A mobile fronthaul link using shunt diode predistorter,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.4.

Lee, S.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

Li, L.

M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.

Lin, H.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.

Link, R.

T. Koch and R. Link, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, no. 10, pp. 613–615, 1986.

Liu, T.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

Liu, X.

F. Effenberger and X. Liu, “Power-efficient method for IM-DD optical transmission of multiple OFDM signals,” Opt. Express, vol. 23, no. 10, pp. 13571–13579, 2015.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.

X. Liu, H. Zeng, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent data rate and 2-μs processing delay,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.3.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.

Loi, K. K.

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

Ma, J.

M. Abdoli, J. Ming Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proc. Signal Process. Adv. Wireless Commun., 2015, pp. 66–70.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

Mao, X.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

Mazzenga, F.

G. Santella and F. Mazzenga, “A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 142–151, 1998.

Mei, X. B.

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

Miao, X.

M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.

Ming Jia, J.

M. Abdoli, J. Ming Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proc. Signal Process. Adv. Wireless Commun., 2015, pp. 66–70.

Myhre, D.

L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.

Park, H.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

Qiu, J.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

Rahman, S.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. IEEE Int. Conf. Elect. Comput. Eng., 2006, pp. 408–411.

Røyset, A.

L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.

Santella, G.

G. Santella and F. Mazzenga, “A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 142–151, 1998.

Sato, K.

T. Iwai, K. Sato, and K. Suto, “Signal distortion and noise in AM-SCM transmission systems employing the feedforward linearized MQW-EA external modulator,” J. Lightw. Technol., vol. 13, no. 8, pp. 1606–1612, 1995.

Shafik, R.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. IEEE Int. Conf. Elect. Comput. Eng., 2006, pp. 408–411.

Shen, Y.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

Shieh, W.

Sung, M.

Suto, K.

T. Iwai, K. Sato, and K. Suto, “Signal distortion and noise in AM-SCM transmission systems employing the feedforward linearized MQW-EA external modulator,” J. Lightw. Technol., vol. 13, no. 8, pp. 1606–1612, 1995.

Tkach, R. W.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

Tu, C. W.

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

Wu, K.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

Yamamoto, N.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over IFoF system,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.4.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, Paper W.4.P1.SC7.72.

Yuan, F.

Zeng, H.

X. Liu, H. Zeng, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent data rate and 2-μs processing delay,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.3.

Zhang, J.

J. Zhang et al., “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996, 2017.

J. Zhang et al., “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proc. Opt. Fiber. Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper Tu2B.3.

Zhang, X.

B. Hraimel and X. Zhang, “Performance improvement of radio-over-fiber links using mixed-polarization electro-absorption modulators,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3239–3248, 2011.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

Zhou, L.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.

Appl. Phys. Lett. (1)

T. Koch and R. Link, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, no. 10, pp. 613–615, 1986.

IEEE Photon. Technol. Lett. (2)

K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. Chang, “Linearization of 1.3-μm MQW electroabsorption modulators using an all-optical frequency-insensitive technique,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 964–966, 1998.

X. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, and R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett., vol. 4, no. 3, pp. 287–289, 1992.

IEEE Trans. Microw. Theory Techn. (2)

B. Hraimel and X. Zhang, “Performance improvement of radio-over-fiber links using mixed-polarization electro-absorption modulators,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3239–3248, 2011.

Y. Shen, B. Hraimel, X. Zhang, G. E. R. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3327–3335, 2010.

IEEE Trans. Veh. Technol. (1)

G. Santella and F. Mazzenga, “A hybrid analytical-simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 142–151, 1998.

J. Lightw. Technol. (5)

B. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.

L. Bjerkan, A. Røyset, L. Hafskjær, and D. Myhre, “Measurement of laser parameters for simulation of high-speed fiberoptic systems,” J. Lightw. Technol., vol. 14, no. 5, pp. 839–850, 1996.

T. Iwai, K. Sato, and K. Suto, “Signal distortion and noise in AM-SCM transmission systems employing the feedforward linearized MQW-EA external modulator,” J. Lightw. Technol., vol. 13, no. 8, pp. 1606–1612, 1995.

B. G. Kim, H. Kim, and Y. C. Chung, “Impact of multipath interference in the performance of RoF-based mobile fronthaul network implemented by using DML,” J. Lightw. Technol., vol. 35, no. 2, pp. 145–151, 2017.

J. Zhang et al., “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightw. Technol., vol. 35, no. 4, pp. 989–996, 2017.

Opt. Express (5)

Other (18)

C. H. Cox, “Distortion in links,” in Analog Optical Links Theory and Practice. Cambridge, U.K.: Cambridge Univ. Press, 2004, pp. 201–261.

R. Shafik, S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. IEEE Int. Conf. Elect. Comput. Eng., 2006, pp. 408–411.

G. P. Agrawal, “Optical transmitters,” in Fiber-Optic Fiber Communication Systems, 4th ed.Hoboken, NJ, USA: Wiley, 2010.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “Simultaneous transmission of multi-RATs and mobile fronthaul in the MMW bands over IFoF system,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.4.

M. Bi, W. Jia, L. Li, X. Miao, and W. Hu, “Investigation of F-OFDM in 5G fronthaul networks for seamless carrier-aggregation and asynchronous transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, Mar. 19–23, 2017, Paper W1C.6.

S. Ishimura et al., “Simultaneous transmission aggregated microwave and millimeter-wave signals over fiber with parallel IM/PM transmitter for mobile fronthaul links,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, Sep. 17–21, 2017, Paper Tu.1.B.5.

“IMT vision frame work and overall objectives of the future development of IMT for 2020 and beyond,” ITU Radiocommunication, Geneva, Switzerland, ITU-R Recommendation M.2083-0, 2015.

X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks,” in Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

M. Abdoli, J. Ming Jia, and J. Ma, “Filtered OFDM: A new waveform for future wireless systems,” in Proc. Signal Process. Adv. Wireless Commun., 2015, pp. 66–70.

“Study on new radio (NR) access technology,” 3GPP, Sophia Antipolis Cedex, France, 3GPP TR 38.912 version 14.0.0, 2017.

“Base station (BS) radio transmission and reception,” 3GPP, Sophia Antipolis Cedex, France, 3GPP TS 36.104 version 14.3.0, 2017.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. H. Lee, “Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme,” in Proc. Opt. Fiber Commun. Conf., San Francisco, CA, USA, Mar. 9–14, 2014, Paper Tu2B.6.

X. Liu, H. Zeng, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent data rate and 2-μs processing delay,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.3.

P. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “190-Gb/s CPRI-equivalent rate fiber-wireless mobile fronthaul for simultaneous transmission of LTE-A and F-OFDM signals,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, Sep. 18–22, 2016, Paper W.4.P1.SC7.72.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. K. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth- and hardware-efficient mobile fronthaul supporting 128×128 MIMO with 100-OFDM signals,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper W3C.3.

C. Han, S. H. Cho, H. S. Chung, and J. H. Lee, “Linearity improvement of direct-modulated multi-IF-over-fiber LTE-A mobile fronthaul link using shunt diode predistorter,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, Sep. 27–Oct. 1, 2015, Paper We.4.4.4.

X. Liu, F. Effenberger, N. Chand, L. Zhou, and H. Lin, “Demonstration of bandwidth-efficient mobile fronthaul enabling seamless aggregation of 36 E-UTRA-like wireless signals in a single 1.1-GHz wavelength channel,” in Proc. Opt. Fiber. Commun., Los Angeles, CA, USA, Mar. 22–26, 2015, Paper M2J.2.

J. Zhang et al., “Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul,” in Proc. Opt. Fiber. Commun., Anaheim, CA, USA, Mar. 20–24, 2016, Paper Tu2B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.