Abstract

Optical interconnects play an important role in enabling high-speed short-reach communication links within next-generation high-performance electronic systems. Multimode polymer waveguides in particular allow the formation of high-capacity optical backplanes and cost-effective board-level optical interconnects. Their formation on flexible substrates offers significant practical advantages and enables their deployment in environments where shape and weight conformity become particularly important, such as in cars and aircraft. However, bending and twisting of flexible multimode waveguides can have a significant effect on their optical transmission performance due to mode loss and mode coupling. Moreover, the magnitude of the induced effects strongly depends on the launch conditions employed. In this paper, therefore, we present detailed loss, crosstalk, and bandwidth studies on flexible multimode waveguide arrays for different launch conditions regarding their use in real-world systems. The minimum radius to achieve a 1 dB excess bending loss is obtained for each launch condition as well as the crosstalk degradation due to bending. It is shown that for a 50 μm MMF input, a 6 mm bending radius is required for excess losses below 1 dB, while crosstalk below −35 dB is obtained in adjacent waveguides even under strong bending. Moreover, it is found that twisting has a small effect on the loss and crosstalk performance of the samples. Excess twisting loss less than 0.1 dB and crosstalk of −40 dB are obtained for three full 360° turns under a 50 μm MMF launch. Finally, the bandwidth studies carried out on the samples indicate than no significant bandwidth degradation is induced due to sample bending, with bandwidth-length product values larger than 150 GHz × m obtained for restricted launches. The set of results presented herein specify the deployment of this flexible polymer multimode waveguide technology in real-world systems and demonstrate its strong potential to implement low-loss high-bandwidth optical interconnects.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.
  2. H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightw. Technol., vol. 22, no. 9, pp. 2021–2033, 2004.
  3. H. P. Kuoet al., “Free-space optical links for board-to-board interconnects,” Appl. Phys. A, vol. 95, pp. 955–965, 2009.
  4. K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability,” Opt. Express, vol. 21, pp. 15395–15400, 2013.
  5. M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.
  6. R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .
  7. G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.
  8. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightw. Technol., vol. 23, no. 12, pp. 4222–4238, 2005.
  9. F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.
  10. L. Schareset al., “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 5, pp. 1032–1044, 2006.
  11. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.
  12. A. Horimoto, K. Kitazoe, and R. Kinoshita, “Simple channel reconnection using polynorbornene based GI waveguide for optical interconnect,” in Proc. IEEE CPMT Symp. Jpn., Kyoto, Japan, 2015, pp. 122–125.
  13. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express, vol. 22, no. 7, pp. 8426–8437, 2014.
  14. R. Dangelet al., “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 759–767, 2008.
  15. J. Bealset al., “A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 983–988, 2009.
  16. N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “Regenerative polymeric bus architecture for board-level optical interconnects,” Opt. Express, vol. 20, pp. 11625–11636, 2012.
  17. N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.
  18. K. Schmidtkeet al., “960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array,” J. Lightw. Technol., vol. 31, no. 24, pp. 3970–3975, 2013.
  19. N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.
  20. N. Bamiedakiset al., “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol., vol. 33, no. 4, pp. 882–888, 2015.
  21. N. Bamiedakiset al., “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2015, Paper STu4F.5.
  22. J. B. IVet al., “Terabit capacity passive polymer optical backplane,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2008, Paper CMG4.
  23. O. Strobel, R. Rejeb, and J. Lubkoll, “Optical polymer and polymer-clad silica fiber data buses for automotive applications,” in Proc. 7th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., 2010, pp. 693–696.
  24. R. König and C. Thiel, “Media oriented systems transport (MOST®)-Standard für multimedia networking im fahrzeug/media oriented systems transport-standard for multimedia networking in vehicle environment,” It-Inf. Technol., vol. 41, pp. 36–43, 1999.
  25. Y. Dong and K. W. Martin, “Gigabit communications over plastic optical fiber,” IEEE Solid-State Circuits Mag., vol. 3, no. 1, pp. 60–69, 2011.
  26. R. Brucket al., “Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process,” Appl. Opt., vol. 52, pp. 4510–4514, 2013.
  27. G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightw. Technol., vol. 31, no. 11, pp. 1835–1841, 2013.
  28. R. Dangelet al., “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 3915–3926, 2013.
  29. H. Numata, M. Tokunari, and J. B. Heroux, “60-micrometer pitch polymer waveguide array attached active optical flex,” in Proc. Conf. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W1A.5.
  30. X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Highly flexible polymeric optical waveguide for out-of-plane optical interconnects,” Opt. Express, vol. 18, pp. 16227–16233, 2010.
  31. T. Yagisawaet al., “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in Proc. 66th Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2016, pp. 1099–1104.
  32. N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.
  33. J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.
  34. A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.
  35. J. Chopin, V. Démery, and B. Davidovitch, “Roadmap to the morphological instabilities of a stretched twisted ribbon,” J. Elasticity, vol. 119, pp. 137–189, 2014.
  36. J. Chopin and A. Kudrolli, “Helicoids, wrinkles, and loops in twisted ribbons,” Phys. Rev. Lett., vol. 111, 2013, Art. no. .
  37. J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.
  38. Z. Haas and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth distance product in multimode fiber systems,” J. Lightw. Technol., vol. 11, no. 7, pp. 1125–1130, 1993.
  39. J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

2015 (1)

N. Bamiedakiset al., “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol., vol. 33, no. 4, pp. 882–888, 2015.

2014 (4)

N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express, vol. 22, no. 7, pp. 8426–8437, 2014.

J. Chopin, V. Démery, and B. Davidovitch, “Roadmap to the morphological instabilities of a stretched twisted ribbon,” J. Elasticity, vol. 119, pp. 137–189, 2014.

2013 (7)

J. Chopin and A. Kudrolli, “Helicoids, wrinkles, and loops in twisted ribbons,” Phys. Rev. Lett., vol. 111, 2013, Art. no. .

A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.

R. Brucket al., “Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process,” Appl. Opt., vol. 52, pp. 4510–4514, 2013.

G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightw. Technol., vol. 31, no. 11, pp. 1835–1841, 2013.

R. Dangelet al., “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 3915–3926, 2013.

K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability,” Opt. Express, vol. 21, pp. 15395–15400, 2013.

K. Schmidtkeet al., “960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array,” J. Lightw. Technol., vol. 31, no. 24, pp. 3970–3975, 2013.

2012 (1)

2011 (1)

Y. Dong and K. W. Martin, “Gigabit communications over plastic optical fiber,” IEEE Solid-State Circuits Mag., vol. 3, no. 1, pp. 60–69, 2011.

2010 (2)

X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Highly flexible polymeric optical waveguide for out-of-plane optical interconnects,” Opt. Express, vol. 18, pp. 16227–16233, 2010.

G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.

2009 (4)

H. P. Kuoet al., “Free-space optical links for board-to-board interconnects,” Appl. Phys. A, vol. 95, pp. 955–965, 2009.

F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

J. Bealset al., “A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 983–988, 2009.

2008 (1)

R. Dangelet al., “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 759–767, 2008.

2006 (1)

L. Schareset al., “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 5, pp. 1032–1044, 2006.

2005 (1)

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightw. Technol., vol. 23, no. 12, pp. 4222–4238, 2005.

2004 (1)

H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightw. Technol., vol. 22, no. 9, pp. 2021–2033, 2004.

1999 (1)

R. König and C. Thiel, “Media oriented systems transport (MOST®)-Standard für multimedia networking im fahrzeug/media oriented systems transport-standard for multimedia networking in vehicle environment,” It-Inf. Technol., vol. 41, pp. 36–43, 1999.

1993 (1)

Z. Haas and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth distance product in multimode fiber systems,” J. Lightw. Technol., vol. 11, no. 7, pp. 1125–1130, 1993.

Alajoki, T.

M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.

Alameh, K.

Baig, S.

G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightw. Technol., vol. 31, no. 11, pp. 1835–1841, 2013.

Bamiedakis, N.

N. Bamiedakiset al., “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol., vol. 33, no. 4, pp. 882–888, 2015.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.

N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.

A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “Regenerative polymeric bus architecture for board-level optical interconnects,” Opt. Express, vol. 20, pp. 11625–11636, 2012.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

N. Bamiedakiset al., “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2015, Paper STu4F.5.

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

Beals, J.

J. Bealset al., “A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 983–988, 2009.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

Brown, C. T.

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

Bruck, R.

Chen, J.

N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

Chen, R. T.

Cho, H.

H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightw. Technol., vol. 22, no. 9, pp. 2021–2033, 2004.

Chopin, J.

J. Chopin, V. Démery, and B. Davidovitch, “Roadmap to the morphological instabilities of a stretched twisted ribbon,” J. Elasticity, vol. 119, pp. 137–189, 2014.

J. Chopin and A. Kudrolli, “Helicoids, wrinkles, and loops in twisted ribbons,” Phys. Rev. Lett., vol. 111, 2013, Art. no. .

Chu, D.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

Dangel, R.

R. Dangelet al., “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 3915–3926, 2013.

R. Dangelet al., “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 759–767, 2008.

Davidovitch, B.

J. Chopin, V. Démery, and B. Davidovitch, “Roadmap to the morphological instabilities of a stretched twisted ribbon,” J. Elasticity, vol. 119, pp. 137–189, 2014.

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

Démery, V.

J. Chopin, V. Démery, and B. Davidovitch, “Roadmap to the morphological instabilities of a stretched twisted ribbon,” J. Elasticity, vol. 119, pp. 137–189, 2014.

Ding, D.

Doany, F. E.

F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.

Dong, Y.

Y. Dong and K. W. Martin, “Gigabit communications over plastic optical fiber,” IEEE Solid-State Circuits Mag., vol. 3, no. 1, pp. 60–69, 2011.

Dou, X.

Edwards, T. J.

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

Haas, Z.

Z. Haas and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth distance product in multimode fiber systems,” J. Lightw. Technol., vol. 11, no. 7, pp. 1125–1130, 1993.

Hashim, A.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.

A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “Regenerative polymeric bus architecture for board-level optical interconnects,” Opt. Express, vol. 20, pp. 11625–11636, 2012.

Heroux, J. B.

H. Numata, M. Tokunari, and J. B. Heroux, “60-micrometer pitch polymer waveguide array attached active optical flex,” in Proc. Conf. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W1A.5.

Horimoto, A.

A. Horimoto, K. Kitazoe, and R. Kinoshita, “Simple channel reconnection using polynorbornene based GI waveguide for optical interconnect,” in Proc. IEEE CPMT Symp. Jpn., Kyoto, Japan, 2015, pp. 122–125.

Ishigure, T.

IV, J. B.

J. B. IVet al., “Terabit capacity passive polymer optical backplane,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2008, Paper CMG4.

Jiang, G.

G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightw. Technol., vol. 31, no. 11, pp. 1835–1841, 2013.

Kapur, P.

H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightw. Technol., vol. 22, no. 9, pp. 2021–2033, 2004.

Karppinen, M.

M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.

Kinoshita, R.

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express, vol. 22, no. 7, pp. 8426–8437, 2014.

A. Horimoto, K. Kitazoe, and R. Kinoshita, “Simple channel reconnection using polynorbornene based GI waveguide for optical interconnect,” in Proc. IEEE CPMT Symp. Jpn., Kyoto, Japan, 2015, pp. 122–125.

Kitazoe, K.

A. Horimoto, K. Kitazoe, and R. Kinoshita, “Simple channel reconnection using polynorbornene based GI waveguide for optical interconnect,” in Proc. IEEE CPMT Symp. Jpn., Kyoto, Japan, 2015, pp. 122–125.

König, R.

R. König and C. Thiel, “Media oriented systems transport (MOST®)-Standard für multimedia networking im fahrzeug/media oriented systems transport-standard for multimedia networking in vehicle environment,” It-Inf. Technol., vol. 41, pp. 36–43, 1999.

Kudrolli, A.

J. Chopin and A. Kudrolli, “Helicoids, wrinkles, and loops in twisted ribbons,” Phys. Rev. Lett., vol. 111, 2013, Art. no. .

Kühner, T.

M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.

Kuo, H. P.

H. P. Kuoet al., “Free-space optical links for board-to-board interconnects,” Appl. Phys. A, vol. 95, pp. 955–965, 2009.

Lim, C.

Lin, X.

Lipson, M.

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightw. Technol., vol. 23, no. 12, pp. 4222–4238, 2005.

Lubkoll, J.

O. Strobel, R. Rejeb, and J. Lubkoll, “Optical polymer and polymer-clad silica fiber data buses for automotive applications,” in Proc. 7th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., 2010, pp. 693–696.

Martin, K. W.

Y. Dong and K. W. Martin, “Gigabit communications over plastic optical fiber,” IEEE Solid-State Circuits Mag., vol. 3, no. 1, pp. 60–69, 2011.

Miller, A.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.

Nirmalathas, A.

Numata, H.

H. Numata, M. Tokunari, and J. B. Heroux, “60-micrometer pitch polymer waveguide array attached active optical flex,” in Proc. Conf. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W1A.5.

Pan, D. Z.

Penty, R. V.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.

N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.

A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “Regenerative polymeric bus architecture for board-level optical interconnects,” Opt. Express, vol. 20, pp. 11625–11636, 2012.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

Pitwon, R.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

Rejeb, R.

O. Strobel, R. Rejeb, and J. Lubkoll, “Optical polymer and polymer-clad silica fiber data buses for automotive applications,” in Proc. 7th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., 2010, pp. 693–696.

Roelkens, G.

G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.

Santoro, M. A.

Z. Haas and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth distance product in multimode fiber systems,” J. Lightw. Technol., vol. 11, no. 7, pp. 1125–1130, 1993.

Saraswat, K. C.

H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightw. Technol., vol. 22, no. 9, pp. 2021–2033, 2004.

Schares, L.

L. Schareset al., “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 5, pp. 1032–1044, 2006.

Schmidtke, K.

K. Schmidtkeet al., “960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array,” J. Lightw. Technol., vol. 31, no. 24, pp. 3970–3975, 2013.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

Schneider, M.

M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.

Shi, F.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

Skafidas, E.

Stevens, P.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

Strobel, O.

O. Strobel, R. Rejeb, and J. Lubkoll, “Optical polymer and polymer-clad silica fiber data buses for automotive applications,” in Proc. 7th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., 2010, pp. 693–696.

Suganuma, D.

Tanskanen, A.

M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.

Thiel, C.

R. König and C. Thiel, “Media oriented systems transport (MOST®)-Standard für multimedia networking im fahrzeug/media oriented systems transport-standard for multimedia networking in vehicle environment,” It-Inf. Technol., vol. 41, pp. 36–43, 1999.

Tokunari, M.

H. Numata, M. Tokunari, and J. B. Heroux, “60-micrometer pitch polymer waveguide array attached active optical flex,” in Proc. Conf. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W1A.5.

Vasil'ev, P.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, E. Skafidas, and K. Alameh, “High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability,” Opt. Express, vol. 21, pp. 15395–15400, 2013.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

Wang, M. R.

G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightw. Technol., vol. 31, no. 11, pp. 1835–1841, 2013.

Wang, X.

White, I. H.

N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.

A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “Regenerative polymeric bus architecture for board-level optical interconnects,” Opt. Express, vol. 20, pp. 11625–11636, 2012.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

Worrall, A.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

Yagisawa, T.

T. Yagisawaet al., “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in Proc. 66th Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2016, pp. 1099–1104.

Appl. Opt. (1)

Appl. Phys. A (1)

H. P. Kuoet al., “Free-space optical links for board-to-board interconnects,” Appl. Phys. A, vol. 95, pp. 955–965, 2009.

Appl. Phys. A, Mater. Sci. Process. (1)

J. Bealset al., “A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture,” Appl. Phys. A, Mater. Sci. Process., vol. 95, pp. 983–988, 2009.

IEEE J. Quantum Electron. (1)

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., vol. 45, no. 4, pp. 415–424, 2009.

IEEE J. Sel. Topics Quantum Electron. (1)

L. Schareset al., “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 5, pp. 1032–1044, 2006.

IEEE Photon. Technol. Lett. (1)

N. Bamiedakis, J. Chen, R. V. Penty, and I. H. White, “Bandwidth studies on multimode polymer waveguides for >25 Gb/s optical interconnects,” IEEE Photon. Technol. Lett., vol. 26, no. 20, pp. 2004–2007, 2014.

IEEE Solid-State Circuits Mag. (1)

Y. Dong and K. W. Martin, “Gigabit communications over plastic optical fiber,” IEEE Solid-State Circuits Mag., vol. 3, no. 1, pp. 60–69, 2011.

IEEE Trans. Adv. Packag. (2)

F. E. Doanyet al., “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 345–359, 2009.

R. Dangelet al., “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 759–767, 2008.

It-Inf. Technol. (1)

R. König and C. Thiel, “Media oriented systems transport (MOST®)-Standard für multimedia networking im fahrzeug/media oriented systems transport-standard for multimedia networking in vehicle environment,” It-Inf. Technol., vol. 41, pp. 36–43, 1999.

J. Elasticity (1)

J. Chopin, V. Démery, and B. Davidovitch, “Roadmap to the morphological instabilities of a stretched twisted ribbon,” J. Elasticity, vol. 119, pp. 137–189, 2014.

J. Lightw. Technol. (9)

Z. Haas and M. A. Santoro, “A mode filtering scheme for improvement of the bandwidth distance product in multimode fiber systems,” J. Lightw. Technol., vol. 11, no. 7, pp. 1125–1130, 1993.

A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode polymer waveguide components for complex on-board optical topologies,” J. Lightw. Technol., vol. 31, no. 24, pp. 3962–3969, 2013.

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, “A 40 Gb/s optical bus for optical backplane interconnections,” J. Lightw. Technol., vol. 32, no. 8, pp. 1526–1537, 2014.

K. Schmidtkeet al., “960 Gb/s optical backplane ecosystem using embedded polymer waveguides and demonstration in a 12G SAS storage array,” J. Lightw. Technol., vol. 31, no. 24, pp. 3970–3975, 2013.

N. Bamiedakiset al., “40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightw. Technol., vol. 33, no. 4, pp. 882–888, 2015.

G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightw. Technol., vol. 31, no. 11, pp. 1835–1841, 2013.

R. Dangelet al., “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightw. Technol., vol. 31, no. 24, pp. 3915–3926, 2013.

H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightw. Technol., vol. 22, no. 9, pp. 2021–2033, 2004.

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightw. Technol., vol. 23, no. 12, pp. 4222–4238, 2005.

Laser Photon. Rev. (1)

G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 751–779, 2010.

Opt. Express (4)

Phys. Rev. Lett. (1)

J. Chopin and A. Kudrolli, “Helicoids, wrinkles, and loops in twisted ribbons,” Phys. Rev. Lett., vol. 111, 2013, Art. no. .

Other (13)

J. Chen, N. Bamiedakis, T. J. Edwards, C. T. Brown, R. V. Penty, and I. H. White, “Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects,” in Proc. IEEE Opt. Int. Conf., 2015, pp. 26–27.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Bandwidth enhancement in multimode polymer waveguides using waveguide layout for optical printed circuit boards,” in Proc. Conf. Opt. Fiber Commun., Anaheim, CA, USA, 2016, Paper W1E. 3.

T. Yagisawaet al., “Structure of 25-Gb/s optical engine for QSFP enabling high-precision passive alignment of optical assembly,” in Proc. 66th Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2016, pp. 1099–1104.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “Flexible multimode polymer waveguides for versatile high-speed optical interconnects,” in Proc. 19th Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

J. Chen, N. Bamiedakis, P. Vasil'ev, R. V. Penty, and I. H. White, “Low-loss and high-bandwidth multimode polymer waveguide components using refractive index engineering,” in Proc. Conf. Lasers Electro-Opt., 2016, Paper SM2G.

H. Numata, M. Tokunari, and J. B. Heroux, “60-micrometer pitch polymer waveguide array attached active optical flex,” in Proc. Conf. Opt. Fiber Commun., Los Angeles, CA, USA, 2017, Paper W1A.5.

N. Bamiedakiset al., “56 Gb/s PAM-4 data transmission over a 1 m long multimode polymer interconnect,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2015, Paper STu4F.5.

J. B. IVet al., “Terabit capacity passive polymer optical backplane,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA, USA, 2008, Paper CMG4.

O. Strobel, R. Rejeb, and J. Lubkoll, “Optical polymer and polymer-clad silica fiber data buses for automotive applications,” in Proc. 7th Int. Symp. Commun. Syst. Netw. Digit. Signal Process., 2010, pp. 693–696.

A. Horimoto, K. Kitazoe, and R. Kinoshita, “Simple channel reconnection using polynorbornene based GI waveguide for optical interconnect,” in Proc. IEEE CPMT Symp. Jpn., Kyoto, Japan, 2015, pp. 122–125.

M. Schneider, T. Kühner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in Proc. 59th Electron. Compon. Technol. Conf., 2009, pp. 1942–1947.

R. Pitwon, A. Worrall, P. Stevens, A. Miller, K. Wang, and K. Schmidtke, “Demonstration of fully enabled data center subsystem with embedded optical interconnect,” Proc. SPIE, vol. 8991, 2014, Art. no. .

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.