Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 13,
  • pp. 2563-2571
  • (2018)

Indium Tin Oxide Based Dual-Polarization Electro-Optic Intensity Modulator on a Single Silicon Waveguide

Not Accessible

Your library or personal account may give you access

Abstract

For high-speed optical transmission, polarization-division-multiplexing (PDM) is a promising technic to double the link capacity. However, most of on-chip PDM systems include a polarization beam splitter, a polarization rotator, and two modulators, which are costly and complex for integration. In this study, a novel dual-polarization electro-optic intensity modulator is proposed that is based on a single silicon waveguide with indium tin oxide (ITO) cladding. The design is validated by numerical simulation with commercial software Lumerical Solution. Based on the epsilon-near-zero effect of ITO, the device, on a single waveguide, manages to modulate simultaneously transverse electric (TE) and transverse magnetic (TM) modes with independent electrical driving signals. With a 75 μm-long silicon rib waveguide, the extinction ratios (ERs) of both TE and TM modes can be around 15 dB, and the nonuniformity is around 0.5 dB. The 3 dB modulation bandwidths are 57.8 GHz and 65.9 GHz for TE and TM modulation, respectively. Within 1 dB ER nonuniformity, the device can operate at E-, S-, and C-band, which distinguishes itself by achieving wavelength-division-multiplexing compatible PDM and with only one single waveguide. To our best knowledge, the concept of independent and simultaneous dual-polarization modulation on a single waveguide is proposed for the first time. The modulator offers various merits including ultracompact size, high speed, and complementary metal oxide semiconductor (CMOS) compatibility.

© 2018 IEEE

PDF Article
More Like This
Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator

Xiaoming Qiu, Xiaoke Ruan, Yanping Li, and Fan Zhang
Opt. Express 26(11) 13902-13914 (2018)

Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material

Alok P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and Mark L. Brongersma
Opt. Express 21(22) 26387-26397 (2013)

Slow-light-assisted electrical tuning in hollow optical waveguide via carrier depletion in silicon and indium tin oxide subwavelength gratings

Swati Rajput, Vishal Kaushik, Sourabh Jain, and Mukesh Kumar
J. Opt. Soc. Am. B 37(8) 2360-2365 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved