Abstract

A novel and low-cost fiber birefringence measurement scheme is proposed and studied by a polarimetric fiber ring laser interrogated by the beat frequency technique. For the fiber ring laser, modes splitting occur between two orthogonal polarization modes because of intrinsic fiber birefringence. As a result, two types of beat frequency signals (i.e., longitudinal mode beat frequency and polarization mode beat frequency signals) are generated simultaneously. The principle of measurement of fiber birefringence by the fiber ring laser has been analyzed theoretically in detail. Two alternative expressions for fiber birefringence change are obtained, which is very convenient for users to choose different order longitudinal and polarization mode beat frequency signals. The variation of fiber birefringence caused by applied strain has been calculated in terms of beat frequency shift. To validate the proposed sensing system, the strain-induced fiber birefringence change in commercial Erbium-doped fiber is investigated and obtained by measuring frequency shift of two types of beat frequency signals. The experimental results show that the fiber birefringence experiences a linear decrease when the applied strain is increased. A strain response coefficient of –1.756 × 10–11/με is obtained. The proposed sensing scheme has obvious advantages of simple structure, low cost, and high sensitivity and it will provide great convenience for measuring fiber birefringence for short-length single mode fiber.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription