Abstract

As optical networks have evolved from point-to-point systems to ring or mesh networks, the optical devices that are needed to construct optical nodes have become more important and need to be more scalable. Hybridization of waveguide and free-space optics, or spatial and planar optical circuits (SPOCs), may provide the solutions for such needs. An SPOC platform is attractive because it can take advantage of both waveguide technology and free-space optics. Waveguide technology provides a high degree of integration of optical functionality for devices such as splitters and non-wavelength selective switches while free-space optics supplies a high degree of parallelism with two-dimensional spatial light modulators such as a liquid crystal on silicon (LCOS) devices. In this paper, we summarize the basics of SPOC technology and review its application to reconfigurable optical add-drop multiplexing (ROADM) devices. The key elements of a waveguide on an SPOC platform are an arrayed-waveguide grating and a spatial beam transformer. The latter functions as a microlens array and provides attractive features such as dense integration of switches. An LCOS device has numerous phase modulating pixels, enabling flexible manipulation of lightwaves. Using an SPOC platform, we constructed and demonstrated devices for ROADM applications including a wavelength filter, tunable optical dispersion compensators, and wavelength selective switches (WSSs). The WSSs range from an ultrahigh port count WSS to a single module wavelength cross connect.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sakamakiet al., “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express, vol. 19, no. 26, pp. B1–11, 2011.
  2. E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.
  3. T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.
  4. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” IEEE J. Lightw. Technol., vol. 24, no. 12, pp. 4763–4789, 2006.
  5. T. Hashimoto, T. Kitagawa, I. Ogawa, and S. Suzuki, “Hybrid integration of active devices on PLC,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2004, paper ThL4.
  6. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 699–714, 1993.
  7. R. Ryfet al., “Scalable wavelength-selective crossconnect switch based on MEMS and planar waveguides,” in Proc. 27th Eur. Conf. Opt. Commun., 2001, pp. 76–77.
  8. N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.
  9. R. Rudnick, D. Sinefeld, O. Golani, and D. Marom, “One GHz resolution arrayed waveguide grating filter with LCoS phase compensation,” in Proc. Conf. Opt. Fiber Commun., 2014, pp. 1–3.
  10. T. Ducellieret al., “Novel high performance hybrid waveguide-MEMS 1 × 9 wavelength selective switch in a 32-cascade loop experiment,” presented at the European Conf. Optical Communication, Stockholm, Sweden, 2001, paper Th.F.4.11.
  11. S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.
  12. K. Sorimotoet al., “Polarization insensitive wavelength selective switch using LCOSs and monolithically integrated multi-layered AWG,” in Proc. OECC Tech. Dig., 2010, pp. 82–83.
  13. D. M. Maromet al., “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” IEEE J. Lightw. Technol., vol. 24, no. 1, pp. 237–241, 2006.
  14. K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.
  15. K. Senoet al., “Demonstration of channelized tunable optical dispersion compensator based on arrayed waveguide grating and liquid crystal on silicon,” Opt. Express, vol. 18, no. 18, pp. 18565–18579, 2010.
  16. K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.
  17. K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.
  18. D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 510–512, 2010.
  19. T. Tanakaet al., “Temperature independent and reduced group delay ripple operation of multi-channel tunable optical dispersion compensator,” in Proc. 16th Opto Electron. Commun. Conf., 2011, pp. 495–496.
  20. K. Senoet al., “Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.
  21. K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.
  22. M. Iwamaet al., “Low loss 1 × 93 wavelength selective switch using PLC-based spot size converter,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.
  23. Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.
  24. K. Sorimotoet al., “Compact 5 × 5 wavelength-selective cross connect using integrated 2-D MEMS mirror arrays,” in Proc. 18th Microopt. Conf., 2013, pp. 1–2.
  25. N. Nemotoet al., “8 × 8 wavelength cross connect with add/drop ports integrated in spatial and planar optical circuit,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.
  26. K. Suzuki and Y. Ikuma, “Spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th3E.1.
  27. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 6, pp. 1090–1101, 2002.
  28. R. C. Cumming, “The serrodyne frequency translator,” Proc. IRE, vol. 45, no. 2, pp. 175–186, 1957.
  29. G. Baxteret al., “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” presented at the Optical Fiber Communication Conf. Expo. National Fiber Optic Engineers Conf., Anaheim, CA, USA, 2006, paper OTuF2.
  30. J. N. Howard, “The monk-gillieson mounting,” Appl. Opt., vol. 5, no. 9, pp. 1466–1467, 1966.
  31. G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2010.
  32. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.
  33. S. Sohmaet al., “Flexible chromatic dispersion compensation over entire L-band for over 40 Gb/s WDM transparent networks using multi-channel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett., vol. 21, no. 17, pp. 1271–1273, 2009.
  34. S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.
  35. D. T. Neilsonet al., “MEMS-based channelized dispersion compensator with flat passbands,” IEEE J. Lightw. Technol., vol. 22, no. 1, pp. 101–105, 2004.
  36. K. Mori, K. Suzuki, and N. Ooba, “Femtosecond optical pulse generation employing a supercontinuum lightwave source and a tunable dispersion compensator based on arrayed-waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Lasers Electro Opt. Pacific Rim Conf., Lasers Electro-Optics, 2009, pp. 1–2.
  37. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.
  38. P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.
  39. M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.
  40. K. Suzukiet al., “Wavelength selective switch for multi-core fiber based space division multiplexed network with core-by-core switching capability,” presented at the 21st Optoelectron. Commun. Conf./Intern. Conf. Photon. Switching, Niigata, Japan, Jul. 3–7, 2016.
  41. X. Guet al., “Compact wavelength selective switch using a Bragg reflector waveguide array with ultra-large number (>100) of output ports,” IEEE J. Lightw. Technol., vol. 33, no. 7, pp. 1358–1364, 2015.

2016 (1)

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

2015 (1)

X. Guet al., “Compact wavelength selective switch using a Bragg reflector waveguide array with ultra-large number (>100) of output ports,” IEEE J. Lightw. Technol., vol. 33, no. 7, pp. 1358–1364, 2015.

2011 (1)

2010 (2)

K. Senoet al., “Demonstration of channelized tunable optical dispersion compensator based on arrayed waveguide grating and liquid crystal on silicon,” Opt. Express, vol. 18, no. 18, pp. 18565–18579, 2010.

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 510–512, 2010.

2009 (1)

S. Sohmaet al., “Flexible chromatic dispersion compensation over entire L-band for over 40 Gb/s WDM transparent networks using multi-channel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett., vol. 21, no. 17, pp. 1271–1273, 2009.

2006 (3)

D. M. Maromet al., “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” IEEE J. Lightw. Technol., vol. 24, no. 1, pp. 237–241, 2006.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” IEEE J. Lightw. Technol., vol. 24, no. 12, pp. 4763–4789, 2006.

2004 (1)

D. T. Neilsonet al., “MEMS-based channelized dispersion compensator with flat passbands,” IEEE J. Lightw. Technol., vol. 22, no. 1, pp. 101–105, 2004.

2002 (1)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 6, pp. 1090–1101, 2002.

1993 (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 699–714, 1993.

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.

1966 (1)

1957 (1)

R. C. Cumming, “The serrodyne frequency translator,” Proc. IRE, vol. 45, no. 2, pp. 175–186, 1957.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2010.

Aratake, A.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Basch, E. B.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.

Baxter, G.

G. Baxteret al., “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” presented at the Optical Fiber Communication Conf. Expo. National Fiber Optic Engineers Conf., Anaheim, CA, USA, 2006, paper OTuF2.

Bowers, J.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

Colbourne, P. D.

P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

Collings, B.

P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

Cumming, R. C.

R. C. Cumming, “The serrodyne frequency translator,” Proc. IRE, vol. 45, no. 2, pp. 175–186, 1957.

Doerr, C. R.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” IEEE J. Lightw. Technol., vol. 24, no. 12, pp. 4763–4789, 2006.

Ducellier, T.

T. Ducellieret al., “Novel high performance hybrid waveguide-MEMS 1 × 9 wavelength selective switch in a 32-cascade loop experiment,” presented at the European Conf. Optical Communication, Stockholm, Sweden, 2001, paper Th.F.4.11.

Egorov, R.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.

Elby, S.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.

Goh, T.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Golani, O.

R. Rudnick, D. Sinefeld, O. Golani, and D. Marom, “One GHz resolution arrayed waveguide grating filter with LCoS phase compensation,” in Proc. Conf. Opt. Fiber Commun., 2014, pp. 1–3.

Gringeri, S.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.

Gu, X.

X. Guet al., “Compact wavelength selective switch using a Bragg reflector waveguide array with ultra-large number (>100) of output ports,” IEEE J. Lightw. Technol., vol. 33, no. 7, pp. 1358–1364, 2015.

Hashimoto, E.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

Hashimoto, T.

T. Hashimoto, T. Kitagawa, I. Ogawa, and S. Suzuki, “Hybrid integration of active devices on PLC,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2004, paper ThL4.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

Helkey, R.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 6, pp. 1090–1101, 2002.

Howard, J. N.

Ikuma, Y.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

K. Suzuki and Y. Ikuma, “Spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th3E.1.

Ishii, M.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

Itoh, M.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

Iwama, M.

M. Iwamaet al., “Low loss 1 × 93 wavelength selective switch using PLC-based spot size converter,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.

Johnson, K. M.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 699–714, 1993.

Kaman, V.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

Kaneko, A.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Kitagawa, T.

T. Hashimoto, T. Kitagawa, I. Ogawa, and S. Suzuki, “Hybrid integration of active devices on PLC,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2004, paper ThL4.

Kitoh, T.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Klingshirn, J.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

Kohtoku, M.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.

Madamopoulos, N.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

Marom, D.

R. Rudnick, D. Sinefeld, O. Golani, and D. Marom, “One GHz resolution arrayed waveguide grating filter with LCoS phase compensation,” in Proc. Conf. Opt. Fiber Commun., 2014, pp. 1–3.

Marom, D. M.

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 510–512, 2010.

D. M. Maromet al., “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” IEEE J. Lightw. Technol., vol. 24, no. 1, pp. 237–241, 2006.

McKnight, D. J.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 699–714, 1993.

Mino, S.

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Mizuno, T.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Mori, K.

K. Mori, K. Suzuki, and N. Ooba, “Femtosecond optical pulse generation employing a supercontinuum lightwave source and a tunable dispersion compensator based on arrayed-waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Lasers Electro Opt. Pacific Rim Conf., Lasers Electro-Optics, 2009, pp. 1–2.

S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

Moriwaki, O.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

Nakajima, M.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

Neilson, D. T.

D. T. Neilsonet al., “MEMS-based channelized dispersion compensator with flat passbands,” IEEE J. Lightw. Technol., vol. 22, no. 1, pp. 101–105, 2004.

Nemoto, N.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

N. Nemotoet al., “8 × 8 wavelength cross connect with add/drop ports integrated in spatial and planar optical circuit,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.

Ogawa, I.

T. Hashimoto, T. Kitagawa, I. Ogawa, and S. Suzuki, “Hybrid integration of active devices on PLC,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2004, paper ThL4.

Okamoto, K.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” IEEE J. Lightw. Technol., vol. 24, no. 12, pp. 4763–4789, 2006.

Ooba, N.

K. Mori, K. Suzuki, and N. Ooba, “Femtosecond optical pulse generation employing a supercontinuum lightwave source and a tunable dispersion compensator based on arrayed-waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Lasers Electro Opt. Pacific Rim Conf., Lasers Electro-Optics, 2009, pp. 1–2.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.

Rudnick, R.

R. Rudnick, D. Sinefeld, O. Golani, and D. Marom, “One GHz resolution arrayed waveguide grating filter with LCoS phase compensation,” in Proc. Conf. Opt. Fiber Commun., 2014, pp. 1–3.

Ryf, R.

R. Ryfet al., “Scalable wavelength-selective crossconnect switch based on MEMS and planar waveguides,” in Proc. 27th Eur. Conf. Opt. Commun., 2001, pp. 76–77.

Sakamaki, Y.

Sakamoto, T.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

Seno, K.

K. Senoet al., “Demonstration of channelized tunable optical dispersion compensator based on arrayed waveguide grating and liquid crystal on silicon,” Opt. Express, vol. 18, no. 18, pp. 18565–18579, 2010.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

K. Senoet al., “Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.

Shibata, T.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Sinefeld, D.

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 510–512, 2010.

R. Rudnick, D. Sinefeld, O. Golani, and D. Marom, “One GHz resolution arrayed waveguide grating filter with LCoS phase compensation,” in Proc. Conf. Opt. Fiber Commun., 2014, pp. 1–3.

Sohma, S.

S. Sohmaet al., “Flexible chromatic dispersion compensation over entire L-band for over 40 Gb/s WDM transparent networks using multi-channel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett., vol. 21, no. 17, pp. 1271–1273, 2009.

S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

Sorimoto, K.

K. Sorimotoet al., “Polarization insensitive wavelength selective switch using LCOSs and monolithically integrated multi-layered AWG,” in Proc. OECC Tech. Dig., 2010, pp. 82–83.

K. Sorimotoet al., “Compact 5 × 5 wavelength-selective cross connect using integrated 2-D MEMS mirror arrays,” in Proc. 18th Microopt. Conf., 2013, pp. 1–2.

Suzuki, K.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

K. Suzukiet al., “Wavelength selective switch for multi-core fiber based space division multiplexed network with core-by-core switching capability,” presented at the 21st Optoelectron. Commun. Conf./Intern. Conf. Photon. Switching, Niigata, Japan, Jul. 3–7, 2016.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.

K. Mori, K. Suzuki, and N. Ooba, “Femtosecond optical pulse generation employing a supercontinuum lightwave source and a tunable dispersion compensator based on arrayed-waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Lasers Electro Opt. Pacific Rim Conf., Lasers Electro-Optics, 2009, pp. 1–2.

K. Suzuki and Y. Ikuma, “Spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th3E.1.

S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

Suzuki, S.

T. Hashimoto, T. Kitagawa, I. Ogawa, and S. Suzuki, “Hybrid integration of active devices on PLC,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2004, paper ThL4.

Takahashi, T.

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

Tanaka, T.

T. Tanakaet al., “Temperature independent and reduced group delay ripple operation of multi-channel tunable optical dispersion compensator,” in Proc. 16th Opto Electron. Commun. Conf., 2011, pp. 495–496.

Underwood, I.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 699–714, 1993.

Watanabe, K.

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

Watanabe, T.

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.

Yamaguchi, J.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

Yamaguchi, K.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

Yuan, S.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

Appl. Opt. (1)

IEEE J. Lightw. Technol. (5)

Y. Ikuma, K. Suzuki, N. Nemoto, E. Hashimoto, O. Moriwaki, and T. Takahashi, “Low-loss transponder aggregator using spatial and planar optical circuit,” IEEE J. Lightw. Technol., vol. 34, no. 1, pp. 67–72, 2016.

D. T. Neilsonet al., “MEMS-based channelized dispersion compensator with flat passbands,” IEEE J. Lightw. Technol., vol. 22, no. 1, pp. 101–105, 2004.

X. Guet al., “Compact wavelength selective switch using a Bragg reflector waveguide array with ultra-large number (>100) of output ports,” IEEE J. Lightw. Technol., vol. 33, no. 7, pp. 1358–1364, 2015.

C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” IEEE J. Lightw. Technol., vol. 24, no. 12, pp. 4763–4789, 2006.

D. M. Maromet al., “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” IEEE J. Lightw. Technol., vol. 24, no. 1, pp. 237–241, 2006.

IEEE J. Quantum Electron. (2)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron., vol. 29, no. 2, pp. 699–714, 1993.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron., vol. 28, no. 4, pp. 908–920, 1992.

IEEE J. Sel. Topics Quantum Electron. (2)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 6, pp. 1090–1101, 2002.

E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 4, pp. 615–626, 2006.

IEEE Photon. Technol. Lett. (2)

D. Sinefeld and D. M. Marom, “Hybrid guided-wave/free-space optics photonic spectral processor based on LCoS phase only modulator,” IEEE Photon. Technol. Lett., vol. 22, no. 7, pp. 510–512, 2010.

S. Sohmaet al., “Flexible chromatic dispersion compensation over entire L-band for over 40 Gb/s WDM transparent networks using multi-channel tunable optical dispersion compensator,” IEEE Photon. Technol. Lett., vol. 21, no. 17, pp. 1271–1273, 2009.

Opt. Express (2)

Proc. IRE (1)

R. C. Cumming, “The serrodyne frequency translator,” Proc. IRE, vol. 45, no. 2, pp. 175–186, 1957.

Other (26)

G. Baxteret al., “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” presented at the Optical Fiber Communication Conf. Expo. National Fiber Optic Engineers Conf., Anaheim, CA, USA, 2006, paper OTuF2.

G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2010.

K. Sorimotoet al., “Compact 5 × 5 wavelength-selective cross connect using integrated 2-D MEMS mirror arrays,” in Proc. 18th Microopt. Conf., 2013, pp. 1–2.

N. Nemotoet al., “8 × 8 wavelength cross connect with add/drop ports integrated in spatial and planar optical circuit,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.

K. Suzuki and Y. Ikuma, “Spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th3E.1.

S. Sohma, K. Mori, T. Takahashi, K. Suzuki, and N. Ooba, “40 λ WDM channel-by-channel and flexible dispersion compensation at 40 Gb/s using multi-channel tunable optical dispersion compensator,” in Proc. 35th Eur. Conf. Opt. Commun., 2009, pp. 1–2.

K. Mori, K. Suzuki, and N. Ooba, “Femtosecond optical pulse generation employing a supercontinuum lightwave source and a tunable dispersion compensator based on arrayed-waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Lasers Electro Opt. Pacific Rim Conf., Lasers Electro-Optics, 2009, pp. 1–2.

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.

P. D. Colbourne and B. Collings, “ROADM switching technologies,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

M. Nakajima, N. Nemoto, K. Yamaguchi, J. Yamaguchi, K. Suzuki, and T. Hashimoto, “In-band OSNR monitors comprising programmable delay line interferometer integrated with wavelength selective switch by spatial and planar optical circuit,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2016, paper Th2A.11.

K. Suzukiet al., “Wavelength selective switch for multi-core fiber based space division multiplexed network with core-by-core switching capability,” presented at the 21st Optoelectron. Commun. Conf./Intern. Conf. Photon. Switching, Niigata, Japan, Jul. 3–7, 2016.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-wavelength channelized tunable optical dispersion compensator with increased bandwidth consisting of arrayed waveguide gratings and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2009, pp. 1–3.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, M. Itoh, and T. Sakamoto, “Wide-passband 88-wavelength channel-by-channel tunable optical dispersion compensator with 50-GHz spacing,” in Proc. Conf. Opt. Fiber Commun., 2011, pp. 1–3.

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, and S. Mino, “Channel-by-channel tunable optical dispersion compensator consisting of arrayed-waveguide grating and liquid crystal on silicon,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

T. Tanakaet al., “Temperature independent and reduced group delay ripple operation of multi-channel tunable optical dispersion compensator,” in Proc. 16th Opto Electron. Commun. Conf., 2011, pp. 495–496.

K. Senoet al., “Spatial beam transformer for wavelength selective switch consisting of silica-based planar lightwave circuit,” in Proc. Conf. Opt. Fiber Commun., 2012, pp. 1–3.

K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh, and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, pp. 1–3.

M. Iwamaet al., “Low loss 1 × 93 wavelength selective switch using PLC-based spot size converter,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 1–3.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

T. Hashimoto, T. Kitagawa, I. Ogawa, and S. Suzuki, “Hybrid integration of active devices on PLC,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2004, paper ThL4.

R. Ryfet al., “Scalable wavelength-selective crossconnect switch based on MEMS and planar waveguides,” in Proc. 27th Eur. Conf. Opt. Commun., 2001, pp. 76–77.

N. Ooba, K. Suzuki, M. Ishii, A. Aratake, T. Shibata, and S. Mino, “Compact wide-band wavelength blocker utilizing novel hybrid AWG-free space focusing optics,” in Proc. Conf. Opt. Fiber Commun., 2008, pp. 1–3.

R. Rudnick, D. Sinefeld, O. Golani, and D. Marom, “One GHz resolution arrayed waveguide grating filter with LCoS phase compensation,” in Proc. Conf. Opt. Fiber Commun., 2014, pp. 1–3.

T. Ducellieret al., “Novel high performance hybrid waveguide-MEMS 1 × 9 wavelength selective switch in a 32-cascade loop experiment,” presented at the European Conf. Optical Communication, Stockholm, Sweden, 2001, paper Th.F.4.11.

S. Yuan, N. Madamopoulos, R. Helkey, V. Kaman, J. Klingshirn, and J. Bowers, “Fully integrated N × N MEMS wavelength selective switch with 100% colorless add-drop ports,” in Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., 2008, pp. 1–3.

K. Sorimotoet al., “Polarization insensitive wavelength selective switch using LCOSs and monolithically integrated multi-layered AWG,” in Proc. OECC Tech. Dig., 2010, pp. 82–83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.