Abstract

We present a numerical and experimental study of surface plasmon resonance (SPR) excitation in a bent single-mode optical fiber with metalized cladding. It is shown that with a suitable combination of bend radius and metal film thickness surface plasmon waves can be excited in the film as a result of coupling between fundamental and surface plasmon modes via whispering gallery modes supported by the bent fiber cladding. The coupling brings about a dip in the transmission spectrum at the resonant wavelength which is strongly dependent on the ambient refractive index. This enables one to build a fiber optic SPR-refractometer with a standard single-mode fiber without breaking integrity of the fiber or using any additional elements. Refractometric sensitivity of ∼5 μm per refractive index unit and resolution of ∼4·10−6 are experimentally demonstrated for the measured refractive index around 1.43. The reported results may find wide application in bio- and chemosensing.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription