Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 22,
  • pp. 4961-4966
  • (2017)

Single- and Multimode Beam Propagation Through an Optothermally Controllable Fano Clusters-Mediated Waveguide

Not Accessible

Your library or personal account may give you access

Abstract

Plasmonic waveguides are strategic compact structures consisting of nanoscale components and/or particles to carry the light. Here, by proposing a systematic and artificial configuration of fused nanoparticle assemblies, we develop an optothermally controllable plasmonic waveguide with high and tunable decay length for propagation of both single- and multimode waves. Using symmetric nanoplasmonic clusters based on phase-change material, here Ge2Sb2Te5, allowed us to efficiently control the beam propagation length and quality at the global telecommunication bands (λ $\approx$ 850 nm and λ $\approx$ 1550 nm). Employing both finite-difference time-domain and finite element method as numerical tools, we accurately computed the critical components of the proposed multifunctional plasmonic light carrier. We believe that the tailored subwavelength optical waveguide paves new approaches to develop practical advanced next-generation nanophotonic technologies.

PDF Article
More Like This
Azimuthally and radially excited charge transfer plasmon and Fano lineshapes in conductive sublayer-mediated nanoassemblies

Arash Ahmadivand, Burak Gerislioglu, and Nezih Pala
J. Opt. Soc. Am. A 34(11) 2052-2056 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved