Abstract

Comprehensive tuning optimization of an integrated optical ring resonator (ORR) based $1\times 4$ optical beam forming network (OBFN) for W-band millimeter wave (mmW) phased arrays is reported. The OBFN chip is implemented using a ultralow loss silicon nitride technology and a two stage binary tree topology. The delay responses of a single- and multiORR delay line were carefully measured, and the results agree well with a lossless theoretical model. Tuning of an ORR was calibrated and verification experiments were performed to verify the tuning accuracy. A flattened delay response for a 3-ORR delay line was achieved, demonstrating a bandwidth of $6\ \text{GHz}$ and dynamic tuning range of $209\ \text{ps}$ , which corresponds to a phase shift of $33.4\pi$ for an 80- $\text{GHz}$ signal. A larger bandwidth can be achieved by reducing the dynamic tuning range. The result is promising for high data rate mmW communications with beamforming.

© 2017 IEEE

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.
  2. J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag., vol. 10, no. 3, pp. 104–112, 2009.
  3. D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.
  4. I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2378–2386, 1995.
  5. T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 26, no. 14, pp. 1407–1410, 2014.
  6. S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.
  7. R. L. Moreiraet al., “Integrated ultra-low-loss 4-Bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon., vol. 1, no. 1, pp. 65–71, 2007.
  9. J. Cardenaset al., “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express, vol. 18, no. 25, pp. 26525–26534, 2010.
  10. J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express, vol. 22, no. 1, pp. 817–823, 2014.
  11. Y. Liuet al., “Single ring resonator delays for integrated optical beam forming networks,” in Proc. IEEE Int. Top. Meeting Microw. Photon., 2016, vol. 7, pp. 321–324.
  12. N. Tessemaet al., “Radio beam-steering via tunable Si$_3$N$_4$ optical delays for multi-Gbps K-band satellite communication,” in Proc. Opt. Fiber Commun. Conf.Washington, D.C.: OSA, 2016, Paper W3K.4. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=OFC-2016-W3K.4
  13. L. Zhuanget al., “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas–part II: Experimental prototype,” J. Lightw. Technol., vol. 28, no. 1, pp. 19–31, 2010.
  14. C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.
  15. X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5
  16. T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Experimental demonstration of photonic millimeter-wave system for high capacity point-to-point wireless communications,” J. Lightw. Technol., vol. 32, no. 20, pp. 3588–3594, 2014.
  17. R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.
  18. J. F. Bauterset al., “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express, vol. 19, no. 4, pp. 3163–3174, 2011.
  19. G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.
  20. Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3
  21. M. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si$_3$N$_4$ waveguides with low nonlinearity and high power handling capability,” Opt. Express, vol. 18, no. 23, pp. 23562–23568, 2010.

2015 (2)

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

2014 (3)

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 26, no. 14, pp. 1407–1410, 2014.

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express, vol. 22, no. 1, pp. 817–823, 2014.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Experimental demonstration of photonic millimeter-wave system for high capacity point-to-point wireless communications,” J. Lightw. Technol., vol. 32, no. 20, pp. 3588–3594, 2014.

2013 (2)

R. L. Moreiraet al., “Integrated ultra-low-loss 4-Bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

2011 (1)

2010 (3)

2009 (1)

J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag., vol. 10, no. 3, pp. 104–112, 2009.

2007 (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon., vol. 1, no. 1, pp. 65–71, 2007.

2001 (1)

G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.

1995 (1)

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2378–2386, 1995.

Adles, E.

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Bauters, J. F.

Blumenthal, D. J.

Bowers, J. E.

Burla, M.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.

Capmany, J.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

Capmany, J. J. E.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Cardenas, J.

Chen, J.

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express, vol. 22, no. 1, pp. 817–823, 2014.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Clark, T. R.

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Experimental demonstration of photonic millimeter-wave system for high capacity point-to-point wireless communications,” J. Lightw. Technol., vol. 32, no. 20, pp. 3588–3594, 2014.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 26, no. 14, pp. 1407–1410, 2014.

Eggleton, B.

G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.

Falke, F. H.

R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.

Frigyes, I.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2378–2386, 1995.

Heck, M. J. R.

Heideman, R. E. R.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Heideman, R. G.

R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.

Hoekman, M.

R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.

Iezekiel, S.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

Isaac, B.

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Kalkavage, J.

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Klamkin, J.

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Leinse, A.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.

Lenz, G.

G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.

Li, R.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Li, X.

Liu, Y.

Y. Liuet al., “Single ring resonator delays for integrated optical beam forming networks,” in Proc. IEEE Int. Top. Meeting Microw. Photon., 2016, vol. 7, pp. 321–324.

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Lu, L.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Madsen, C.

G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.

Marpaung, D.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.

McKenna, T. P.

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 26, no. 14, pp. 1407–1410, 2014.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Experimental demonstration of photonic millimeter-wave system for high capacity point-to-point wireless communications,” J. Lightw. Technol., vol. 32, no. 20, pp. 3588–3594, 2014.

Moreira, R. L.

R. L. Moreiraet al., “Integrated ultra-low-loss 4-Bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.

Nanzer, J. A.

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Experimental demonstration of photonic millimeter-wave system for high capacity point-to-point wireless communications,” J. Lightw. Technol., vol. 32, no. 20, pp. 3588–3594, 2014.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 26, no. 14, pp. 1407–1410, 2014.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.

Sales, S.

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Schreuder, F.

R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.

Seeds, A. J.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2378–2386, 1995.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon., vol. 1, no. 1, pp. 65–71, 2007.

Slusher, R.

G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.

Tessema, N.

N. Tessemaet al., “Radio beam-steering via tunable Si$_3$N$_4$ optical delays for multi-Gbps K-band satellite communication,” in Proc. Opt. Fiber Commun. Conf.Washington, D.C.: OSA, 2016, Paper W3K.4. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=OFC-2016-W3K.4

Tien, M.

van Dijk, P.

C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon., vol. 1, no. 1, pp. 65–71, 2007.

Wang, J.

Wang, X.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Wells, J.

J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag., vol. 10, no. 3, pp. 104–112, 2009.

Wichman, A.

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon., vol. 1, no. 1, pp. 65–71, 2007.

Xie, J.

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express, vol. 22, no. 1, pp. 817–823, 2014.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Zhou, L.

J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express, vol. 22, no. 1, pp. 817–823, 2014.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Zhuang, L.

L. Zhuanget al., “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas–part II: Experimental prototype,” J. Lightw. Technol., vol. 28, no. 1, pp. 19–31, 2010.

C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.

Zou, Z.

Fiber Integr. Opt. (1)

J. A. Nanzer, A. Wichman, J. Klamkin, T. P. McKenna, and T. R. Clark, “Millimeter-wave photonics for communications and phased arrays,” Fiber Integr. Opt., vol. 34, no. 4, pp. 159–174, 2015.

IEEE J. Quantum Electron. (1)

G. Lenz, B. Eggleton, C. Madsen, and R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 525–532, 2001.

IEEE Microw. Mag. (2)

J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag., vol. 10, no. 3, pp. 104–112, 2009.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets Optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag., vol. 16, no. 8, pp. 28–45, 2015.

IEEE Photon. Technol. Lett. (2)

R. L. Moreiraet al., “Integrated ultra-low-loss 4-Bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett., vol. 25, no. 12, pp. 1165–1168, 2013.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic beamsteering of a millimeter-wave array with 10-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 26, no. 14, pp. 1407–1410, 2014.

IEEE Trans. Microw. Theory Techn. (1)

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2378–2386, 1995.

J. Lightw. Technol. (2)

L. Zhuanget al., “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas–part II: Experimental prototype,” J. Lightw. Technol., vol. 28, no. 1, pp. 19–31, 2010.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Experimental demonstration of photonic millimeter-wave system for high capacity point-to-point wireless communications,” J. Lightw. Technol., vol. 32, no. 20, pp. 3588–3594, 2014.

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. E. R. Heideman, A. Leinse, S. Sales, and J. J. E. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Nature Photon. (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon., vol. 1, no. 1, pp. 65–71, 2007.

Opt. Express (4)

Other (6)

R. G. Heideman, A. Leinse, M. Hoekman, F. Schreuder, and F. H. Falke, “TriPleXTM: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,” in Proc. 2014 IEEE Photonics Conf., 2014, pp. 224–225.

C. Roeloffzen, P. van Dijk, D. Marpaung, M. Burla, and L. Zhuang, “Development of a broadband integrated optical beamformer for Kuband phased array antennas,” in Proc. 34th ESA Antenna Workshop, 2012, pp. 3–5.

X. Wang, L. Zhou, R. Li, J. Xie, L. Lu, and J. Chen, “Nanosecond-range continuously tunable silicon optical delay line using ultra-thin silicon waveguides,” in Proc. Conf. Lasers Electro-Optics. Washington, D.C.: OSA, 2016, Paper STu1G.5. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2016-STu1G.5

Y. Liuet al., “Single ring resonator delays for integrated optical beam forming networks,” in Proc. IEEE Int. Top. Meeting Microw. Photon., 2016, vol. 7, pp. 321–324.

N. Tessemaet al., “Radio beam-steering via tunable Si$_3$N$_4$ optical delays for multi-Gbps K-band satellite communication,” in Proc. Opt. Fiber Commun. Conf.Washington, D.C.: OSA, 2016, Paper W3K.4. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=OFC-2016-W3K.4

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. Adles, and J. Klamkin, “Ring resonator delay elements for integrated optical beamforming networks: Group delay ripple analysis,” in Proc. Adv. Photon. 2016 (IPR, NOMA, Sensors, Netw., SPPCom, SOF), Optical Society of America, 2016, Paper IW1B.3. [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=IPRSN-2016-IW1B.3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.