Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 21,
  • pp. 4766-4780
  • (2017)

Electronic–Photonic Co-Optimization of High-Speed Silicon Photonic Transmitters

Not Accessible

Your library or personal account may give you access

Abstract

System-level driven electronic–photonic codesign is the key to improving the bandwidth density and energy efficiency for high-speed silicon photonic links. In many data-communication scenarios, optical link power is dominated by its transmitter side including the laser source. In this paper, we propose a comprehensive co-optimization framework for high-speed silicon photonic transmitters utilizing compact models and a detailed optical simulation framework. Given technology and link constraints, microring and Mach–Zehnder transmitter designs are optimized and compared based on a unified optical phase shifter model. NRZ and PAM4 modulation schemes are analyzed and compared for microring-based transmitters at 50 Gb/s. Multistage and traveling wave Mach–Zehnder transmitters are optimized and discussed as well. The results show that, for a 50 Gb/s NRZ optical link, an optimized microring transmitter could save more than 60% of the total laser and driver power compared to an optimized Mach–Zehnder transmitter under equivalent photonic technology constraints. For a given datarate and receiver sensitivity, design tradeoffs of silicon photonic processes, devices, and architecture choices are discussed in depth. In addition, this paper introduces a new Simulink toolbox for transient optical simulation. Combined with the proposed optimization engine, it provides an electrooptical co-optimization approach toward truly energy-efficient high-speed silicon photonic links.

PDF Article
More Like This
Optimization of PAM-4 transmitters based on lumped silicon photonic MZMs for high-speed short-reach optical links

Shiyu Zhou, Hsin-ta Wu, Khosrov Sadeghipour, Carmelo Scarcella, Cormac Eason, Marc Rensing, Mark J. Power, Cleitus Antony, Peter O’Brien, Paul D. Townsend, and Peter Ossieur
Opt. Express 25(4) 4312-4325 (2017)

16-channel photonic–electric co-designed silicon transmitter with ultra-low power consumption

Jingbo Shi, Ming Jin, Tao Yang, Haowen Shu, Fenghe Yang, Han Liu, Yuansheng Tao, Jiangrui Deng, Ruixuan Chen, Changhao Han, Nan Qi, and Xingjun Wang
Photon. Res. 11(2) 143-149 (2023)

Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter

Chi Xiong, Douglas M. Gill, Jonathan E. Proesel, Jason S. Orcutt, Wilfried Haensch, and William M. J. Green
Optica 3(10) 1060-1065 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.