Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 20,
  • pp. 4366-4374
  • (2017)

A Model for Designing Ultralow Noise Single- and Dual-Loop 10-GHz Optoelectronic Oscillators

Not Accessible

Your library or personal account may give you access

Abstract

A complete model describing both single- and dual-loop optoelectronic oscillators (OEO) is introduced. It is compared to several experimental configurations, with excellent agreement in all cases. The physical insight into noise coupling mechanisms brought by the model further allows us for the design of ultralow noise OEO. Phase noise performances at 10 GHz with a single 1 km delay line and with a dual 1 km/100 m delay lines are reported. An optimized dual loop configuration exhibits low phase noise floor at high offset frequency (–160 dBc/Hz at 100 kHz) and low spur levels (–145 dBc/Hz), here again in close agreement with our model.

PDF Article
More Like This
Comprehensive computational model of single- and dual-loop optoelectronic oscillators with experimental verification

Etgar C. Levy, Olukayode Okusaga, Moshe Horowitz, Curtis R. Menyuk, Weimin Zhou, and Gary M. Carter
Opt. Express 18(20) 21461-21476 (2010)

Study on low-phase-noise optoelectronic oscillator and high-sensitivity phase noise measurement system

Jun Hong, An-min Liu, and Jian Guo
J. Opt. Soc. Am. A 30(8) 1557-1562 (2013)

Phase noise measurement of an optoelectronic oscillator based on the photonic-delay line cross-correlation method

Zhiqiang Fan, Qi Qiu, Jun Su, Tianhang Zhang, and Yue Lin
Opt. Lett. 44(8) 1992-1995 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.