Abstract

The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass $\text{Dy}^{3+}: \text{Ga}_{5}\text{Ge}_{20}\text{Sb}_{10}\text{S}_{65}$ . To obtain a high efficiency, the fiber laser is followed by an optical amplifier. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For the dysprosium concentration ${\text{6}}\, \times\, {\text{10}}^{25}$ ions/ $\text{m}^{3}$ and the input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB $\text{m}^{-1}$ . The optimized MOPA configuration allows a laser efficiency larger than 21%. By considering the high beam quality provided by photonic crystal fibers, it is a good candidate for medium infrared light generation whose main applications include, but are not limited to, molecular spectroscopy and environmental monitoring.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.
  2. L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express, vol. 20, no. 7, pp. 7616–7629, 2012.
  3. J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.
  4. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
  5. S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.
  6. F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
  7. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.
  8. M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.
  9. N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.
  10. L. Brillandet al., “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express, vol. 14, no. 3, pp. 1280–1285, 2006.
  11. F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.
  12. G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .
  13. L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.
  14. R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .
  15. R. Thapaet al., “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett., vol. 40, no. 21, pp. 5074–5077, 2015.
  16. N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.
  17. H. Jelinkovaet al. “Dysprosium-doped PbGa$_2$S$_4$ laser generating at 4.3 μm directly pumped by 1.7 μm laser diode,” Opt. Lett., vol. 38, no. 16, pp. 3040–3043, 2013.
  18. G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
  19. F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.
  20. M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.
  21. L. Sojkaet al., “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express, vol. 2, no. 11, pp. 1632–1640, 2012.
  22. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
  23. M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
  24. G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

2016 (1)

M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.

2015 (2)

F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.

R. Thapaet al., “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett., vol. 40, no. 21, pp. 5074–5077, 2015.

2014 (1)

L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.

2013 (3)

R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .

H. Jelinkovaet al. “Dysprosium-doped PbGa$_2$S$_4$ laser generating at 4.3 μm directly pumped by 1.7 μm laser diode,” Opt. Lett., vol. 38, no. 16, pp. 3040–3043, 2013.

G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .

2012 (2)

2010 (2)

S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

2009 (3)

F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.

M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

2008 (2)

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.

2007 (1)

F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.

2006 (1)

2005 (2)

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

2003 (1)

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

1991 (1)

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.

Adam, J. L.

J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.

Aggarwal, I. D.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.

Allegretti, L.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

Allen, R. E.

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.

Barnes, N. P.

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.

Bia, P.

Bozzetti, M.

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

Brilland, L.

Calò, G.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

Carlone, G.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

D’Orazio, A.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

De Sario, M.

L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express, vol. 20, no. 7, pp. 7616–7629, 2012.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

Falconi, M. C.

M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.

Gattass, R. R.

R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .

Ibsen, M.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.

Jelinkova, H.

Mescia, L.

L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.

L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express, vol. 20, no. 7, pp. 7616–7629, 2012.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

Moizan, V.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

Nazabal, V.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

Palma, G.

G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .

Petruzzelli, V.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

Prudenzano, F.

L. Mescia, P. Bia, M. De Sario, A. Di Tommaso, and F. Prudenzano, “Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator,” Opt. Express, vol. 20, no. 7, pp. 7616–7629, 2012.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

Quimby, R. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.

Renna, F.

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

Sahu, J. K.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.

Sanghera, J. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.

Sario, M. De

M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.

Shaw, L. B.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

Smektala, F.

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

Sojka, L.

Starecki, F.

F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.

Sujecki, S.

S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.

Thapa, R.

Tommaso, A. Di

Voo, N. Y.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.

Zhang, X.

J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.

IEE Proc., Microw., Antennas Propag. (1)

M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.

IEEE J. Quantum Electron. (1)

N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.

IEEE J. Sel. Topics Quantum Electron. (1)

L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.

IEEE Photon. J. (1)

R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .

IEEE Photon. Technol. Lett. (3)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.

M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.

IEEE Trans. Nanotechnol. (1)

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.

J. Lightw. Technol. (1)

F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.

J. Non-Cryst. Solids (2)

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.

F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.

Opt. Eng. (1)

G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .

Opt. Express (2)

Opt. Laser Technol. (1)

M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.

Opt. Lett. (2)

Opt. Mater. (1)

F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.

Sens. Actuators B, Chem. (1)

F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.

Other (2)

J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.