Abstract

WS2 layered material offers a great potential for the development of next generation laser photonic devices due to its strong layer absorption compared with graphene. The passively Q-switched Nd:YVO4 laser operating at 1064 nm was first demonstrated by using layered tungsten disulfide WS2 saturable absorber SA, which was fabricated by using radio frequency magnetron sputtering method. The fabrication method is scalable and capable of producing large size sample with high uniformity. Besides, the thickness of produced sample can be well-controlled by adjusting sputtering time. A stable Q-switched laser operation is achieved by using this home made few layers WS2-SA within a diode-pumped Nd:YVO4 laser cavity. The maximum average output power obtained is 19.6 mW corresponding to a repetition rate of 135 kHz, a pulse duration of 2.3 μs and single pulse energy of 145 nJ. This result proves the promising Q-switching performance of the fabricated WS2-SA.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription