Abstract

We present a mathematical analysis and comparison of the performance of integrated on-chip semiconductor ring laser gyroscope (SRLG) fabricated using GaAs/AlGaAs and InP/InGaAsP technologies. The performance parameters of the gyro are modeled in terms of fundamental material, waveguide, and resonator parameters. In addition to this, influence of phenomena specific to semiconductor lasers such as nonlinear coupling, spatial hole burning, gain grating formation, and carrier induced index change on the gyro performance is also included. The analysis helps in identifying critical parameters, which must be optimized to improve the gyro performance.Best achievable performance of integrated SRLG is calculated, and design modifications are suggested to enhance it for high-performance military applications.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription