Abstract

Microwave measurement refers to the acquisition of parameters of a microwave signal or the identification of properties of an object via microwave-based approaches. Thanks to the broad bandwidth and high speed provided by modern photonics, microwave measurement in the optical domain can provide better performance in terms of bandwidth and speed which may not be achievable using traditional, even state-of-the-art electronics. In this tutorial, techniques for photonics-based broadband and high-speed microwave measurement are discussed with an emphasis on the system architectures for microwave signal parameter measurement and object property identification. Emerging technologies in this area and possible future research directions are also discussed.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335,  2009.
  2. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.
  3. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.
  4. S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 3, no. 3, pp. 219–240,  2014.
  5. S. Panet al., “Satellite payloads pay off,” IEEE Microw. Mag., vol. 16, no. 8, pp. 61–73,  2015.
  6. R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron., vol. 52, no. 1, pp. 1–13,  2016.
  7. W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.
  8. K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.
  9. X. Zhanget al., “Electro-optic polymer infiltrated silicon slot photonic crystal waveguide for broadband electromagnetic field sensing,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, 2014, Paper IW2A. 3.
  10. L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2692–2703,  2002.
  11. L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2704–2715,  2002.
  12. Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .
  13. J. Santos-Aguilar and C. Gutiérrez-Martínez, “Lithium Niobate (LiNbO 3) optical retarders used as electric field sensors,” in Proc. 7th Int. Conf. Sensing Technol., 2013, pp. 660–664.
  14. K. Yang, L. Katehi, and J. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett., vol. 77, no. 4, pp. 486–488,  2000.
  15. G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.
  16. G. Gaboritet al., “A nonperturbative electrooptic sensor for in situ electric discharge characterization,” IEEE Trans. Plasma Sci., vol. 41, no. 10, pp. 2851–2857,  2013.
  17. R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.
  18. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1784–1786,  1997.
  19. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2321–2323,  1996.
  20. H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.
  21. B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.
  22. D.-J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic sensing using high-even-order harmonic sidebands,” Opt. Express, vol. 17, no. 17, pp. 14909–14917,  2009.
  23. X. Zhanget al., “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightw. Technol., vol. 32, no. 20, pp. 3774–3784,  2014.
  24. C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.
  25. A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Commun. Lett., vol. 2, no. 1, pp. 11–13,  1998.
  26. D. K. Barton, Radar System Analysis and Modeling.Norwood, MA, USA: Artech House, 2004.
  27. B. Brannon, “Sampled systems and the effects of clock phase noise and jitter,” Analog Devices App. Note, vol. AN-756, pp. 1–11, 2004.
  28. U. L. Rohde, A. K. Poddar, and A. M. Apte, “Getting its measure: Oscillator phase noise measurement techniques and limitations,” IEEE Microw. Mag., vol. 14, no. 6, pp. 73–86,  2013.
  29. C. Schiebold, “Theory and design of the delay line discriminator for phase noise measurements,” Microw. J., vol. 26, no. 12, pp. 102–112, 1983.
  30. PN9000 Phase Noise Test System. (2016). [Online]. Available: http://www.noisext.com/index.php?option=com_content&view=article&id=58&Itemid=194
  31. E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.
  32. K. Volyanskiyet al., “Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals,” J. Opt. Soc. Amer. B, vol. 25, no. 12, pp. 2140–2150,  2008.
  33. D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.
  34. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485,  2012.
  35. D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.
  36. J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.
  37. F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett., vol. 51, no. 16, pp. 1272–1274,  2015.
  38. R. Vessot, L. Mueller, and J. Vanier, “A cross-correlation technique for measuring the short-term properties of stable oscillators,” Short-Term Frequency Stability, NASA SP-80, Washington, DC, USA, 1965, p. 111.
  39. E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay line cross correlation method for phase noise measurement,” in Proc. IEEE Int. Proc. Freq. Control Symp. Expo., 2004, pp. 303–306.
  40. P. Salzensteinet al., “Realization of a phase noise measurement bench using cross correlation and double optical delay line,” Acta Phys. Pol. Series a, vol. 112, no. 5, pp. 1107–1111,  2007.
  41. PHENOMTM phase noise measurement system. (2016). [Online]. Available: http://www.oewaves.com/phase-noise-measurement
  42. S. Pan and J. Yao, Photonics‐Assisted Instantaneous Frequency Measurement.Hoboken, NJ, USA: Wiley, 2012.
  43. J. M. Heatonet al., “16-channel (1-to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” in Proc. Optoelectron. High-Power Lasers Appl., 1998, pp. 245–251.
  44. W. Wanget al., “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 10, pp. 1996–2001,  2001.
  45. D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in Proc. Int. Top. Meet. Microw. Photon., 2005, pp. 249–252.
  46. S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.
  47. R. K. Mohanet al., “Ultra-wideband spectral analysis using S2 technology,” J. Lumin., vol. 127, no. 1, pp. 116–128,  2007.
  48. G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.
  49. F. Schlottau, M. Colice, K. Wagner, and W. R. Babbitt, “Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis,” Opt. Lett., vol. 30, no. 22, pp. 3003–3005,  2005.
  50. X. J. Xieet al., “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663,  2012.
  51. Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.
  52. W. Xu, D. Zhu, and ShilongPan, “Coherent photonic RF channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” Opt. Eng., vol. 55, no. 4,  2016, Art no. .
  53. L. Ménager, I. Lorgeré, J.-L. Le Gouët, D. Dolfi, and J.-P. Huignard, “Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning,” Opt. Lett., vol. 26, no. 16, pp. 1245–1247,  2001.
  54. M. Colice, F. Schlottau, and K. H. Wagner, “Broadband radio-frequency spectrum analysis in spectral-hole-burning media,” Appl. Opt., vol. 45, no. 25, pp. 6393–6408, 2006.
  55. M. Colice, J. Xiong, and K. H. Wagner, “Frequency-doubled fiber lasers for RF spectrum analysis in spectral-hole-burning media,” IEEE J. Quantum Electron., vol. 44, no. 6, pp. 587–594,  2008.
  56. V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett., vol. 28, no. 6, pp. 384–386,  2003.
  57. L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett., vol. 18, no. 9–12, pp. 1188–1190,  2006.
  58. X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1989–1991,  2008.
  59. X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.
  60. M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 206–208,  2009.
  61. X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightw. Technol., vol. 27, no. 23, pp. 5314–5320,  2009.
  62. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.
  63. S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1437–1439,  2010.
  64. H. Y. Fu, Z. W. Xu, and K. Zhu, “Remote wideband microwave frequency measurement based on a single-passband microwave photonic filter,” IEEE Photon. J., vol. 4, no. 5, pp. 1401–1406,  2012.
  65. N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.
  66. Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.
  67. H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2462–2470,  2014.
  68. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.
  69. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.
  70. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett., vol. 33, no. 2, pp. 98–100,  2008.
  71. L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 642–644,  2009.
  72. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett., vol. 39, no. 8, pp. 2419–2422,  2014.
  73. D. R. Reilly, S. X. Wang, and G. S. Kanter, “Nonuniform optical undersampling for high-resolution microwave frequency measurements,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 997–999,  2012.
  74. H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1249–1251,  2008.
  75. J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter,” Opt. Lett., vol. 38, no. 21, pp. 4316–4319,  2013.
  76. D. Q. Feng, H. Xie, L. F. Qian, Q. H. Bai, and J. Q. Sun, “Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber,” Opt. Express, vol. 23, no. 13, pp. 17613–17621,  2015.
  77. L. Liuet al., “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun., vol. 335, pp. 266–270,  2015.
  78. M. Paganiet al., “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica, vol. 2, no. 8, pp. 751–756,  2015.
  79. T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightw. Technol., vol. 32, no. 20, pp. 3831–3838,  2014.
  80. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett., vol. 25, no. 9, pp. 837–840,  2013.
  81. H. Y. Jianget al., “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica, vol. 3, no. 1, pp. 30–34,  2016.
  82. M. Skolnik, Radar Handbook. New York, NY, USA: McGraw-Hill, 2008.
  83. P. Ghelfiet al., “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345,  2014.
  84. F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.
  85. F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 757–759,  2015.
  86. P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.
  87. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .
  88. V. S. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems. Boca Raton, FL, USA: CRC Press, 1998.
  89. C. Baker, A. Hume, and C. J. Baker, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 2, pp. 3–6,  2003.
  90. A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008.
  91. Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.
  92. R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, UWB Sensor Networks for Position Location and Imaging of Objects and Environments.Hoboken, NJ, USA: Wiley, 2009.
  93. H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks.Norwood, MA, USA: Artech House, 2002.
  94. S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightw. Technol., vol. 28, no. 16, pp. 2445–2455,  2010.
  95. J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proc. Int. Top. Meet. Microw. Photon., 2015, pp. 1–4.
  96. T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634,  2015.
  97. B. Vidal, M. Á. Piqueras, and J. Martí, “Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightw. Technol., vol. 24, no. 7, pp. 2741–2745,  2006.
  98. X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.
  99. R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.
  100. X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.
  101. G. R. Song Xixi, Z. Yonggang, and P. Shilong, “Experimental demonstration of a GPS-over-fiber multi-antenna receiver system,” J. Data Acquisition Process., vol. 06, pp. 957–963, 2014.
  102. X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.
  103. D. Macias-Valadez, S. LaRochelle, R. Santerre, and B. Filion, “Fiber optic synchronisation architecture for high precision GPS applications,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OWF6.

2016 (5)

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron., vol. 52, no. 1, pp. 1–13,  2016.

W. Xu, D. Zhu, and ShilongPan, “Coherent photonic RF channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” Opt. Eng., vol. 55, no. 4,  2016, Art no. .

H. Y. Jianget al., “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica, vol. 3, no. 1, pp. 30–34,  2016.

P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

2015 (12)

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634,  2015.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 757–759,  2015.

D. Q. Feng, H. Xie, L. F. Qian, Q. H. Bai, and J. Q. Sun, “Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber,” Opt. Express, vol. 23, no. 13, pp. 17613–17621,  2015.

L. Liuet al., “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun., vol. 335, pp. 266–270,  2015.

M. Paganiet al., “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica, vol. 2, no. 8, pp. 751–756,  2015.

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

S. Panet al., “Satellite payloads pay off,” IEEE Microw. Mag., vol. 16, no. 8, pp. 61–73,  2015.

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett., vol. 51, no. 16, pp. 1272–1274,  2015.

2014 (9)

X. Zhanget al., “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightw. Technol., vol. 32, no. 20, pp. 3774–3784,  2014.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 3, no. 3, pp. 219–240,  2014.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2462–2470,  2014.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett., vol. 39, no. 8, pp. 2419–2422,  2014.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightw. Technol., vol. 32, no. 20, pp. 3831–3838,  2014.

P. Ghelfiet al., “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345,  2014.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

G. R. Song Xixi, Z. Yonggang, and P. Shilong, “Experimental demonstration of a GPS-over-fiber multi-antenna receiver system,” J. Data Acquisition Process., vol. 06, pp. 957–963, 2014.

2013 (8)

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett., vol. 25, no. 9, pp. 837–840,  2013.

J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter,” Opt. Lett., vol. 38, no. 21, pp. 4316–4319,  2013.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

G. Gaboritet al., “A nonperturbative electrooptic sensor for in situ electric discharge characterization,” IEEE Trans. Plasma Sci., vol. 41, no. 10, pp. 2851–2857,  2013.

C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.

U. L. Rohde, A. K. Poddar, and A. M. Apte, “Getting its measure: Oscillator phase noise measurement techniques and limitations,” IEEE Microw. Mag., vol. 14, no. 6, pp. 73–86,  2013.

2012 (5)

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485,  2012.

D. R. Reilly, S. X. Wang, and G. S. Kanter, “Nonuniform optical undersampling for high-resolution microwave frequency measurements,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 997–999,  2012.

X. J. Xieet al., “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663,  2012.

H. Y. Fu, Z. W. Xu, and K. Zhu, “Remote wideband microwave frequency measurement based on a single-passband microwave photonic filter,” IEEE Photon. J., vol. 4, no. 5, pp. 1401–1406,  2012.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

2011 (2)

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.

2010 (2)

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1437–1439,  2010.

S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightw. Technol., vol. 28, no. 16, pp. 2445–2455,  2010.

2009 (8)

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 206–208,  2009.

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightw. Technol., vol. 27, no. 23, pp. 5314–5320,  2009.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 642–644,  2009.

D.-J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic sensing using high-even-order harmonic sidebands,” Opt. Express, vol. 17, no. 17, pp. 14909–14917,  2009.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335,  2009.

2008 (6)

K. Volyanskiyet al., “Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals,” J. Opt. Soc. Amer. B, vol. 25, no. 12, pp. 2140–2150,  2008.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1249–1251,  2008.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett., vol. 33, no. 2, pp. 98–100,  2008.

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1989–1991,  2008.

M. Colice, J. Xiong, and K. H. Wagner, “Frequency-doubled fiber lasers for RF spectrum analysis in spectral-hole-burning media,” IEEE J. Quantum Electron., vol. 44, no. 6, pp. 587–594,  2008.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008.

2007 (3)

R. K. Mohanet al., “Ultra-wideband spectral analysis using S2 technology,” J. Lumin., vol. 127, no. 1, pp. 116–128,  2007.

P. Salzensteinet al., “Realization of a phase noise measurement bench using cross correlation and double optical delay line,” Acta Phys. Pol. Series a, vol. 112, no. 5, pp. 1107–1111,  2007.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

2006 (4)

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

M. Colice, F. Schlottau, and K. H. Wagner, “Broadband radio-frequency spectrum analysis in spectral-hole-burning media,” Appl. Opt., vol. 45, no. 25, pp. 6393–6408, 2006.

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett., vol. 18, no. 9–12, pp. 1188–1190,  2006.

B. Vidal, M. Á. Piqueras, and J. Martí, “Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightw. Technol., vol. 24, no. 7, pp. 2741–2745,  2006.

2005 (3)

G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.

F. Schlottau, M. Colice, K. Wagner, and W. R. Babbitt, “Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis,” Opt. Lett., vol. 30, no. 22, pp. 3003–3005,  2005.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

2004 (3)

B. Brannon, “Sampled systems and the effects of clock phase noise and jitter,” Analog Devices App. Note, vol. AN-756, pp. 1–11, 2004.

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.

2003 (2)

V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett., vol. 28, no. 6, pp. 384–386,  2003.

C. Baker, A. Hume, and C. J. Baker, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 2, pp. 3–6,  2003.

2002 (3)

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks.Norwood, MA, USA: Artech House, 2002.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2692–2703,  2002.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2704–2715,  2002.

2001 (2)

W. Wanget al., “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 10, pp. 1996–2001,  2001.

L. Ménager, I. Lorgeré, J.-L. Le Gouët, D. Dolfi, and J.-P. Huignard, “Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning,” Opt. Lett., vol. 26, no. 16, pp. 1245–1247,  2001.

2000 (3)

K. Yang, L. Katehi, and J. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett., vol. 77, no. 4, pp. 486–488,  2000.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

1998 (1)

A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Commun. Lett., vol. 2, no. 1, pp. 11–13,  1998.

1997 (1)

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1784–1786,  1997.

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2321–2323,  1996.

1983 (1)

C. Schiebold, “Theory and design of the delay line discriminator for phase noise measurements,” Microw. J., vol. 26, no. 12, pp. 102–112, 1983.

Aditya, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

Al-Raweshidy, H.

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks.Norwood, MA, USA: Artech House, 2002.

Apte, A. M.

U. L. Rohde, A. K. Poddar, and A. M. Apte, “Getting its measure: Oscillator phase noise measurement techniques and limitations,” IEEE Microw. Mag., vol. 14, no. 6, pp. 73–86,  2013.

Armada, A. G.

A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Commun. Lett., vol. 2, no. 1, pp. 11–13,  1998.

Ashourian, M.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2462–2470,  2014.

Attygalle, M.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 206–208,  2009.

Austin, M. W.

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

Babbitt, W. R.

F. Schlottau, M. Colice, K. Wagner, and W. R. Babbitt, “Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis,” Opt. Lett., vol. 30, no. 22, pp. 3003–3005,  2005.

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.

Bai, Q. H.

Baker, C.

C. Baker, A. Hume, and C. J. Baker, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 2, pp. 3–6,  2003.

Baker, C. J.

C. Baker, A. Hume, and C. J. Baker, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 2, pp. 3–6,  2003.

Barber, Z. W.

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.

Barton, D. K.

D. K. Barton, Radar System Analysis and Modeling.Norwood, MA, USA: Artech House, 2004.

Baum, C. E.

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

Ben, D.

Blum, R. S.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008.

Bogoni, A.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.

Brannon, B.

B. Brannon, “Sampled systems and the effects of clock phase noise and jitter,” Analog Devices App. Note, vol. AN-756, pp. 1–11, 2004.

Bretenaker, F.

G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.

Bui, L. A.

Calvo, M.

A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Commun. Lett., vol. 2, no. 1, pp. 11–13,  1998.

Canning, J.

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

Cao, J.

H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

Chan, E. H. W.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett., vol. 39, no. 8, pp. 2419–2422,  2014.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightw. Technol., vol. 32, no. 20, pp. 3831–3838,  2014.

Chen, H.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.

Chen, M.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

Chen, W.

R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.

Chen, Y.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

Chernyak, V. S.

V. S. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems. Boca Raton, FL, USA: CRC Press, 1998.

Chi, H.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1249–1251,  2008.

Christina, L.

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

Cimini, L. J.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008.

Colice, M.

Coutaz, J.-L.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2692–2703,  2002.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2704–2715,  2002.

Crozatier, V.

G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Dahdah, J.

G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.

Dai, Y.

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

David, G.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

Ding, X.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

Dolfi, D.

Duvillaret, L.

C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2704–2715,  2002.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2692–2703,  2002.

G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.

Edvell, L.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in Proc. Int. Top. Meet. Microw. Photon., 2005, pp. 249–252.

Emami, H.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2462–2470,  2014.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett., vol. 33, no. 2, pp. 98–100,  2008.

Englund, M.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in Proc. Int. Top. Meet. Microw. Photon., 2005, pp. 249–252.

Fandiño, J. S.

Fang, G.

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.

Farzaneh, M.

C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.

Feng, D. Q.

Filion, B.

D. Macias-Valadez, S. LaRochelle, R. Santerre, and B. Filion, “Fiber optic synchronisation architecture for high precision GPS applications,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OWF6.

Fu, H. Y.

H. Y. Fu, Z. W. Xu, and K. Zhu, “Remote wideband microwave frequency measurement based on a single-passband microwave photonic filter,” IEEE Photon. J., vol. 4, no. 5, pp. 1401–1406,  2012.

Fu, J.

J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proc. Int. Top. Meet. Microw. Photon., 2015, pp. 1–4.

Fu, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

Gaborit, G.

G. Gaboritet al., “A nonperturbative electrooptic sensor for in situ electric discharge characterization,” IEEE Trans. Plasma Sci., vol. 41, no. 10, pp. 2851–2857,  2013.

G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.

Gasulla, I.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.

P. Ghelfiet al., “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345,  2014.

Gillette, L.

G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.

Gorju, G.

G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.

Gouhier, B. J.

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

Gu, Y. Y.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.

Gutiérrez-Martínez, C.

J. Santos-Aguilar and C. Gutiérrez-Martínez, “Lithium Niobate (LiNbO 3) optical retarders used as electric field sensors,” in Proc. 7th Int. Conf. Sensing Technol., 2013, pp. 660–664.

Haimovich, A. M.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008.

Han, R.

Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .

Han, X. Y.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Harrington, C.

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.

Heaton, J. M.

J. M. Heatonet al., “16-channel (1-to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” in Proc. Optoelectron. High-Power Lasers Appl., 1998, pp. 245–251.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2321–2323,  1996.

Hirsch, O.

R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, UWB Sensor Networks for Position Location and Imaging of Objects and Environments.Hoboken, NJ, USA: Wiley, 2009.

Hu, J. J.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Huang, D.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

Huang, S.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

Huignard, J.-P.

Hume, A.

C. Baker, A. Hume, and C. J. Baker, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 2, pp. 3–6,  2003.

Hunter, D.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in Proc. Int. Top. Meet. Microw. Photon., 2005, pp. 249–252.

Hunter, D. B.

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 206–208,  2009.

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett., vol. 18, no. 9–12, pp. 1188–1190,  2006.

Jabbari, M.

C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.

Jarrige, P.

G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.

Jiang, H. Y.

Jin, X.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

Ka-Lun, L.

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

Kang, Z. J.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Kanter, G. S.

D. R. Reilly, S. X. Wang, and G. S. Kanter, “Nonuniform optical undersampling for high-resolution microwave frequency measurements,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 997–999,  2012.

Katehi, L.

K. Yang, L. Katehi, and J. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett., vol. 77, no. 4, pp. 486–488,  2000.

Katehi, L. P.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

Komaki, S.

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks.Norwood, MA, USA: Artech House, 2002.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 757–759,  2015.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.

LaRochelle, S.

D. Macias-Valadez, S. LaRochelle, R. Santerre, and B. Filion, “Fiber optic synchronisation architecture for high precision GPS applications,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OWF6.

Lavielle, V.

Le Gouet, J.

G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.

Le Gouët, J.-L.

Lee, D.-J.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

Li, J.

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

Li, M.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

Li, W.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

Li, Y. Q.

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

Li, Z.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

Lin, C.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

Lin, J.

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

Lindsay, A.

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

Liu, H.

H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.

Liu, L.

L. Liuet al., “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun., vol. 335, pp. 266–270,  2015.

Liu, T.

Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .

Lloret, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Lorgeré, I.

Lu, B.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

Luo, B.

Macias-Valadez, D.

D. Macias-Valadez, S. LaRochelle, R. Santerre, and B. Filion, “Fiber optic synchronisation architecture for high precision GPS applications,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OWF6.

Maleki, L.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay line cross correlation method for phase noise measurement,” in Proc. IEEE Int. Proc. Freq. Control Symp. Expo., 2004, pp. 303–306.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett., vol. 25, no. 9, pp. 837–840,  2013.

Martí, J.

B. Vidal, M. Á. Piqueras, and J. Martí, “Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightw. Technol., vol. 24, no. 7, pp. 2741–2745,  2006.

Ménager, L.

Minasian, R. A.

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron., vol. 52, no. 1, pp. 1–13,  2016.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightw. Technol., vol. 32, no. 20, pp. 3831–3838,  2014.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett., vol. 39, no. 8, pp. 2419–2422,  2014.

Mitchell, A.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett., vol. 33, no. 2, pp. 98–100,  2008.

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

Mohan, R. K.

R. K. Mohanet al., “Ultra-wideband spectral analysis using S2 technology,” J. Lumin., vol. 127, no. 1, pp. 116–128,  2007.

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.

Mueller, L.

R. Vessot, L. Mueller, and J. Vanier, “A cross-correlation technique for measuring the short-term properties of stable oscillators,” Short-Term Frequency Stability, NASA SP-80, Washington, DC, USA, 1965, p. 111.

Muñoz, P.

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2321–2323,  1996.

Nguyen, L. V.

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 642–644,  2009.

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett., vol. 18, no. 9–12, pp. 1188–1190,  2006.

Nguyen, T. A.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett., vol. 39, no. 8, pp. 2419–2422,  2014.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightw. Technol., vol. 32, no. 20, pp. 3831–3838,  2014.

Nirmalathas, A.

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

Nitsch, D.

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 757–759,  2015.

Pagani, M.

Pan, S.

S. Panet al., “Satellite payloads pay off,” IEEE Microw. Mag., vol. 16, no. 8, pp. 61–73,  2015.

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett., vol. 51, no. 16, pp. 1272–1274,  2015.

D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634,  2015.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 3, no. 3, pp. 219–240,  2014.

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485,  2012.

S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightw. Technol., vol. 28, no. 16, pp. 2445–2455,  2010.

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1437–1439,  2010.

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightw. Technol., vol. 27, no. 23, pp. 5314–5320,  2009.

J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proc. Int. Top. Meet. Microw. Photon., 2015, pp. 1–4.

S. Pan and J. Yao, Photonics‐Assisted Instantaneous Frequency Measurement.Hoboken, NJ, USA: Wiley, 2012.

Pan, W.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

Papapolymerou, I.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

Pei, L.

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

Piqueras, M. Á.

B. Vidal, M. Á. Piqueras, and J. Martí, “Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightw. Technol., vol. 24, no. 7, pp. 2741–2745,  2006.

Poddar, A. K.

U. L. Rohde, A. K. Poddar, and A. M. Apte, “Getting its measure: Oscillator phase noise measurement techniques and limitations,” IEEE Microw. Mag., vol. 14, no. 6, pp. 73–86,  2013.

Prather, W. D.

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

Qian, L. F.

Reilly, D. R.

D. R. Reilly, S. X. Wang, and G. S. Kanter, “Nonuniform optical undersampling for high-resolution microwave frequency measurements,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 997–999,  2012.

Rialland, S.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2692–2703,  2002.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2704–2715,  2002.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

Rohde, U. L.

U. L. Rohde, A. K. Poddar, and A. M. Apte, “Getting its measure: Oscillator phase noise measurement techniques and limitations,” IEEE Microw. Mag., vol. 14, no. 6, pp. 73–86,  2013.

Rubiola, E.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay line cross correlation method for phase noise measurement,” in Proc. IEEE Int. Proc. Freq. Control Symp. Expo., 2004, pp. 303–306.

Sabath, F.

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

Sachs, J.

R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, UWB Sensor Networks for Position Location and Imaging of Objects and Environments.Hoboken, NJ, USA: Wiley, 2009.

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

Salik, E.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay line cross correlation method for phase noise measurement,” in Proc. IEEE Int. Proc. Freq. Control Symp. Expo., 2004, pp. 303–306.

Salzenstein, P.

P. Salzensteinet al., “Realization of a phase noise measurement bench using cross correlation and double optical delay line,” Acta Phys. Pol. Series a, vol. 112, no. 5, pp. 1107–1111,  2007.

Sancho, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

Santerre, R.

D. Macias-Valadez, S. LaRochelle, R. Santerre, and B. Filion, “Fiber optic synchronisation architecture for high precision GPS applications,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OWF6.

Santos-Aguilar, J.

J. Santos-Aguilar and C. Gutiérrez-Martínez, “Lithium Niobate (LiNbO 3) optical retarders used as electric field sensors,” in Proc. 7th Int. Conf. Sensing Technol., 2013, pp. 660–664.

Sarkhosh, N.

Schiebold, C.

C. Schiebold, “Theory and design of the delay line discriminator for phase noise measurements,” Microw. J., vol. 26, no. 12, pp. 102–112, 1983.

Schlottau, F.

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 757–759,  2015.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.

Shao, J.

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.

Shao, L.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

Sharpe, T.

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.

Shi, N. N.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Shilong, P.

G. R. Song Xixi, Z. Yonggang, and P. Shilong, “Experimental demonstration of a GPS-over-fiber multi-antenna receiver system,” J. Data Acquisition Process., vol. 06, pp. 957–963, 2014.

ShilongPan,

W. Xu, D. Zhu, and ShilongPan, “Coherent photonic RF channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” Opt. Eng., vol. 55, no. 4,  2016, Art no. .

Shum, P. P.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

Sima, W.

Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .

Skafidas, E.

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

Skolnik, M.

M. Skolnik, Radar Handbook. New York, NY, USA: McGraw-Hill, 2008.

Song, C.

H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.

Song Xixi, G. R.

G. R. Song Xixi, Z. Yonggang, and P. Shilong, “Experimental demonstration of a GPS-over-fiber multi-antenna receiver system,” J. Data Acquisition Process., vol. 06, pp. 957–963, 2014.

SpringThorpe, A.

H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.

Stewart, M.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

Sun, J. Q.

Sun, S.

Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .

Thomä, R.

R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, UWB Sensor Networks for Position Location and Imaging of Objects and Environments.Hoboken, NJ, USA: Wiley, 2009.

Tonda, S.

Torres, R. J.

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

Tsakiri, M.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

Vanier, J.

R. Vessot, L. Mueller, and J. Vanier, “A cross-correlation technique for measuring the short-term properties of stable oscillators,” Short-Term Frequency Stability, NASA SP-80, Washington, DC, USA, 1965, p. 111.

Vessot, R.

R. Vessot, L. Mueller, and J. Vanier, “A cross-correlation technique for measuring the short-term properties of stable oscillators,” Short-Term Frequency Stability, NASA SP-80, Washington, DC, USA, 1965, p. 111.

Vidal, B.

B. Vidal, M. Á. Piqueras, and J. Martí, “Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightw. Technol., vol. 24, no. 7, pp. 2741–2745,  2006.

Volat, C.

C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.

Volyanskiy, K.

K. Volyanskiyet al., “Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals,” J. Opt. Soc. Amer. B, vol. 25, no. 12, pp. 2140–2150,  2008.

Wagner, K.

Wagner, K. H.

M. Colice, J. Xiong, and K. H. Wagner, “Frequency-doubled fiber lasers for RF spectrum analysis in spectral-hole-burning media,” IEEE J. Quantum Electron., vol. 44, no. 6, pp. 587–594,  2008.

M. Colice, F. Schlottau, and K. H. Wagner, “Broadband radio-frequency spectrum analysis in spectral-hole-burning media,” Appl. Opt., vol. 45, no. 25, pp. 6393–6408, 2006.

Wang, B.

R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.

Wang, C.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

Wang, R.

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

Wang, S. X.

D. R. Reilly, S. X. Wang, and G. S. Kanter, “Nonuniform optical undersampling for high-resolution microwave frequency measurements,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 997–999,  2012.

Wang, T.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

Wang, W.

W. Wanget al., “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 10, pp. 1996–2001,  2001.

Wang, Y. Q.

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2321–2323,  1996.

Whitaker, J.

K. Yang, L. Katehi, and J. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett., vol. 77, no. 4, pp. 486–488,  2000.

Whitaker, J. F.

D.-J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic sensing using high-even-order harmonic sidebands,” Opt. Express, vol. 17, no. 17, pp. 14909–14917,  2009.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

Winnall, S. T.

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

Wu, Q.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1784–1786,  1997.

Wu, S.

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.

Xie, H.

Xie, S.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

Xie, X.

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

Xie, X. J.

X. J. Xieet al., “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663,  2012.

Xiong, J.

M. Colice, J. Xiong, and K. H. Wagner, “Frequency-doubled fiber lasers for RF spectrum analysis in spectral-hole-burning media,” IEEE J. Quantum Electron., vol. 44, no. 6, pp. 587–594,  2008.

Xu, K.

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

Xu, W.

W. Xu, D. Zhu, and ShilongPan, “Coherent photonic RF channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” Opt. Eng., vol. 55, no. 4,  2016, Art no. .

Xu, Y.

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.

Xu, Z. W.

H. Y. Fu, Z. W. Xu, and K. Zhu, “Remote wideband microwave frequency measurement based on a single-passband microwave photonic filter,” IEEE Photon. J., vol. 4, no. 5, pp. 1401–1406,  2012.

Yan, L.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

Yang, K.

K. Yang, L. Katehi, and J. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett., vol. 77, no. 4, pp. 486–488,  2000.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

Yang, Q.

Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .

Yao, J.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1437–1439,  2010.

S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightw. Technol., vol. 28, no. 16, pp. 2445–2455,  2010.

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightw. Technol., vol. 27, no. 23, pp. 5314–5320,  2009.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335,  2009.

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1989–1991,  2008.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1249–1251,  2008.

S. Pan and J. Yao, Photonics‐Assisted Instantaneous Frequency Measurement.Hoboken, NJ, USA: Wiley, 2012.

Yao, T.

Yonggang, Z.

G. R. Song Xixi, Z. Yonggang, and P. Shilong, “Experimental demonstration of a GPS-over-fiber multi-antenna receiver system,” J. Data Acquisition Process., vol. 06, pp. 957–963, 2014.

Yook, J.-G.

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

Yu, N.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay line cross correlation method for phase noise measurement,” in Proc. IEEE Int. Proc. Freq. Control Symp. Expo., 2004, pp. 303–306.

Yu, Z.

R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.

Yuan, J.

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

Zeng, R.

R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.

Zetik, R.

R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, UWB Sensor Networks for Position Location and Imaging of Objects and Environments.Hoboken, NJ, USA: Wiley, 2009.

Zhang, F.

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett., vol. 51, no. 16, pp. 1272–1274,  2015.

D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 3, no. 3, pp. 219–240,  2014.

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Zhang, J.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Zhang, X.

X. Zhanget al., “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightw. Technol., vol. 32, no. 20, pp. 3774–3784,  2014.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

X. Zhanget al., “Electro-optic polymer infiltrated silicon slot photonic crystal waveguide for broadband electromagnetic field sensing,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, 2014, Paper IW2A. 3.

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1784–1786,  1997.

Zhang, Y.

Zhao, M. S.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Zheng, S.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

Zhou, J.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

Zhou, P.

D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

Zhu, D.

W. Xu, D. Zhu, and ShilongPan, “Coherent photonic RF channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” Opt. Eng., vol. 55, no. 4,  2016, Art no. .

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634,  2015.

D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett., vol. 51, no. 16, pp. 1272–1274,  2015.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 3, no. 3, pp. 219–240,  2014.

Zhu, J.

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

Zhu, K.

H. Y. Fu, Z. W. Xu, and K. Zhu, “Remote wideband microwave frequency measurement based on a single-passband microwave photonic filter,” IEEE Photon. J., vol. 4, no. 5, pp. 1401–1406,  2012.

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Zou, X.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightw. Technol., vol. 27, no. 23, pp. 5314–5320,  2009.

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1989–1991,  2008.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1249–1251,  2008.

Acta Phys. Pol. Series a (1)

P. Salzensteinet al., “Realization of a phase noise measurement bench using cross correlation and double optical delay line,” Acta Phys. Pol. Series a, vol. 112, no. 5, pp. 1107–1111,  2007.

Analog Devices App. Note (1)

B. Brannon, “Sampled systems and the effects of clock phase noise and jitter,” Analog Devices App. Note, vol. AN-756, pp. 1–11, 2004.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1784–1786,  1997.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett., vol. 69, no. 16, pp. 2321–2323,  1996.

H. Liu, C. Song, A. SpringThorpe, and J. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett., vol. 84, no. 20, pp. 4068–4070,  2004.

K. Yang, L. Katehi, and J. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett., vol. 77, no. 4, pp. 486–488,  2000.

Electron. Lett. (1)

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett., vol. 51, no. 16, pp. 1272–1274,  2015.

GPS World (1)

X. Ding, Y. Chen, D. Huang, J. Zhu, M. Tsakiri, and M. Stewart, “Slope monitoring using GPS: A multi-antenna approach,” GPS World, vol. 11, no. 3, pp. 52–55, 2000.

IEEE Aerosp. Electron. Syst. Mag. (1)

C. Baker, A. Hume, and C. J. Baker, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 2, pp. 3–6,  2003.

IEEE Commun. Lett. (1)

A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Commun. Lett., vol. 2, no. 1, pp. 11–13,  1998.

IEEE J. Quantum Electron. (2)

R. A. Minasian, “Ultra-wideband and adaptive photonic signal processing of microwave signals,” IEEE J. Quantum Electron., vol. 52, no. 1, pp. 1–13,  2016.

M. Colice, J. Xiong, and K. H. Wagner, “Frequency-doubled fiber lasers for RF spectrum analysis in spectral-hole-burning media,” IEEE J. Quantum Electron., vol. 44, no. 6, pp. 587–594,  2008.

IEEE Microw. Mag. (2)

S. Panet al., “Satellite payloads pay off,” IEEE Microw. Mag., vol. 16, no. 8, pp. 61–73,  2015.

U. L. Rohde, A. K. Poddar, and A. M. Apte, “Getting its measure: Oscillator phase noise measurement techniques and limitations,” IEEE Microw. Mag., vol. 14, no. 6, pp. 73–86,  2013.

IEEE Microw. Wireless Compon. Lett. (3)

F. Scotti, D. Onori, and F. Laghezza, “Fully coherent S-and X-band photonics-aided radar system demonstration,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 757–759,  2015.

X. Zhang, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Instantaneous microwave frequency measurement using an optical phase modulator,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 422–424,  2009.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber Bragg grating,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 52–54,  2011.

IEEE Photon. J. (1)

H. Y. Fu, Z. W. Xu, and K. Zhu, “Remote wideband microwave frequency measurement based on a single-passband microwave photonic filter,” IEEE Photon. J., vol. 4, no. 5, pp. 1401–1406,  2012.

IEEE Photon. Technol. Lett. (14)

M. Attygalle and D. B. Hunter, “Improved photonic technique for broadband radio-frequency measurement,” IEEE Photon. Technol. Lett., vol. 21, no. 4, pp. 206–208,  2009.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photon. Technol. Lett., vol. 21, no. 15, pp. 1069–1071,  2009.

S. Pan and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter pair,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1437–1439,  2010.

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett., vol. 18, no. 9–12, pp. 1188–1190,  2006.

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett., vol. 20, no. 23, pp. 1989–1991,  2008.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 45–47,  2009.

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett., vol. 25, no. 9, pp. 837–840,  2013.

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photon. Technol. Lett., vol. 21, no. 10, pp. 642–644,  2009.

D. R. Reilly, S. X. Wang, and G. S. Kanter, “Nonuniform optical undersampling for high-resolution microwave frequency measurements,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 997–999,  2012.

H. Chi, X. Zou, and J. Yao, “An approach to the measurement of microwave frequency based on optical power monitoring,” IEEE Photon. Technol. Lett., vol. 20, no. 14, pp. 1249–1251,  2008.

G. Gorju, V. Crozatier, I. Lorgeré, J. Le Gouet, and F. Bretenaker, “10-GHz bandwidth RF spectral analyzer with MHz resolution based on spectral hole burning in Tm 3+: YAG,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2385–2387,  2005.

X. J. Xieet al., “Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb,” IEEE Photon. Technol. Lett., vol. 24, no. 8, pp. 661–663,  2012.

D. Zhu, F. Zhang, P. Zhou, D. Zhu, and S. Pan, “Wideband phase noise measurement using a multifunctional microwave photonic processor,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2434–2437,  2014.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, “A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression,” IEEE Photon. Technol. Lett., vol. 19, no. 14, pp. 1057–1059,  2007.

IEEE Signal Process. Mag. (1)

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 116–129, 2008.

IEEE Trans. Dielectr. Electr. Insul. (2)

R. Zeng, B. Wang, Z. Yu, and W. Chen, “Design and application of an integrated electro-optic sensor for intensive electric field measurement,” IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 1, pp. 312–319,  2011.

C. Volat, M. Jabbari, M. Farzaneh, and L. Duvillaret, “New method for in live-line detection of small defects in composite insulator based on electro-optic E-field sensor,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 1, pp. 194–201,  2013.

IEEE Trans. Electromagn. Compat. (1)

W. D. Prather, C. E. Baum, R. J. Torres, F. Sabath, and D. Nitsch, “Survey of worldwide high-power wideband capabilities,” IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 335–344,  2004.

IEEE Trans. Microw. Theory Techn. (6)

K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 2, pp. 288–294,  2000.

F. Scotti, F. Laghezza, P. Ghelfi, and A. Bogoni, “Multi-band software-defined coherent radar based on a single photonic transceiver,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 546–552,  2015.

S. T. Winnall, A. Lindsay, M. W. Austin, J. Canning, and A. Mitchell, “A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp. 868–872,  2006.

W. Wanget al., “Characterization of a coherent optical RF channelizer based on a diffraction grating,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 10, pp. 1996–2001,  2001.

H. Emami and M. Ashourian, “Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2462–2470,  2014.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1421–1430,  2015.

IEEE Trans. Plasma Sci. (1)

G. Gaboritet al., “A nonperturbative electrooptic sensor for in situ electric discharge characterization,” IEEE Trans. Plasma Sci., vol. 41, no. 10, pp. 2851–2857,  2013.

IEICE Trans. Electron. (1)

B. J. Gouhier, L. Ka-Lun, A. Nirmalathas, L. Christina, and E. Skafidas, “Recirculating frequency shifter-based hybrid electro-optic probing system with ultra-wide bandwidth,” IEICE Trans. Electron., vol. 98, no. 8, pp. 857–865,  2015.

J. Data Acquisition Process. (1)

G. R. Song Xixi, Z. Yonggang, and P. Shilong, “Experimental demonstration of a GPS-over-fiber multi-antenna receiver system,” J. Data Acquisition Process., vol. 06, pp. 957–963, 2014.

J. Lightw. Technol. (8)

B. Vidal, M. Á. Piqueras, and J. Martí, “Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques,” J. Lightw. Technol., vol. 24, no. 7, pp. 2741–2745,  2006.

X. Zou, S. Pan, and J. Yao, “Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation,” J. Lightw. Technol., vol. 27, no. 23, pp. 5314–5320,  2009.

X. Zhanget al., “Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator,” J. Lightw. Technol., vol. 32, no. 20, pp. 3774–3784,  2014.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 27, no. 3, pp. 314–335,  2009.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightw. Technol., vol. 31, no. 4, pp. 571–586,  2013.

S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightw. Technol., vol. 28, no. 16, pp. 2445–2455,  2010.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure,” J. Lightw. Technol., vol. 32, no. 20, pp. 3831–3838,  2014.

P. Ghelfi, F. Laghezza, F. Scotti, and D. Onori, “Photonics for radars operating on multiple coherent bands,” J. Lightw. Technol., vol. 34, no. 2, pp. 500–507,  2016.

J. Lumin. (1)

R. K. Mohanet al., “Ultra-wideband spectral analysis using S2 technology,” J. Lumin., vol. 127, no. 1, pp. 116–128,  2007.

J. Mod. Opt. (1)

Y. Q. Li, L. Pei, J. Li, Y. Q. Wang, and J. Yuan, “Theory study on a range-extended and resolution-improved microwave frequency measurement,” J. Mod. Opt., vol. 63, no. 7, pp. 613–620,  2015.

J. Opt. Soc. Amer. B (4)

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. I. Theoretical comparison among different modulation techniques,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2692–2703,  2002.

L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Amer. B, vol. 19, no. 11, pp. 2704–2715,  2002.

E. Rubiola, E. Salik, S. Huang, N. Yu, and L. Maleki, “Photonic-delay technique for phase-noise measurement of microwave oscillators,” J. Opt. Soc. Amer. B, vol. 22, no. 5, pp. 987–997,  2005.

K. Volyanskiyet al., “Applications of the optical fiber to the generation and measurement of low-phase-noise microwave signals,” J. Opt. Soc. Amer. B, vol. 25, no. 12, pp. 2140–2150,  2008.

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538,  2013.

Microw. J. (1)

C. Schiebold, “Theory and design of the delay line discriminator for phase noise measurements,” Microw. J., vol. 26, no. 12, pp. 102–112, 1983.

Nature (1)

P. Ghelfiet al., “A fully photonics-based coherent radar system,” Nature, vol. 507, no. 7492, pp. 341–345,  2014.

Opt. Commun. (2)

L. Liuet al., “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun., vol. 335, pp. 266–270,  2015.

N. N. Shi, Y. Y. Gu, J. J. Hu, Z. J. Kang, X. Y. Han, and M. S. Zhao, “Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy,” Opt. Commun., vol. 328, pp. 87–90,  2014.

Opt. Eng. (1)

W. Xu, D. Zhu, and ShilongPan, “Coherent photonic RF channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering,” Opt. Eng., vol. 55, no. 4,  2016, Art no. .

Opt. Express (2)

Opt. Lett. (10)

J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter,” Opt. Lett., vol. 38, no. 21, pp. 4316–4319,  2013.

F. Schlottau, M. Colice, K. Wagner, and W. R. Babbitt, “Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis,” Opt. Lett., vol. 30, no. 22, pp. 3003–3005,  2005.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett., vol. 40, no. 8, pp. 1631–1634,  2015.

L. Ménager, I. Lorgeré, J.-L. Le Gouët, D. Dolfi, and J.-P. Huignard, “Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning,” Opt. Lett., vol. 26, no. 16, pp. 1245–1247,  2001.

T. A. Nguyen, E. H. W. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett., vol. 39, no. 8, pp. 2419–2422,  2014.

V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett., vol. 28, no. 6, pp. 384–386,  2003.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett., vol. 33, no. 2, pp. 98–100,  2008.

D. Zhu, F. Zhang, P. Zhou, and S. Pan, “Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter,” Opt. Lett., vol. 40, no. 7, pp. 1326–1329,  2015.

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett., vol. 37, no. 4, pp. 755–757,  2012.

S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett., vol. 37, no. 21, pp. 4483–4485,  2012.

Optica (2)

Radio Over Fiber Technologies for Mobile Communications Networks. (1)

H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks.Norwood, MA, USA: Artech House, 2002.

Sci. China Technol. Sc. (1)

Y. Dai, K. Xu, X. Xie, L. Yan, R. Wang, and J. Lin, “Broadband photonic radio frequency (RF) channelization based on coherent optical frequency combs and polarization I/Q demodulation,” Sci. China Technol. Sc., vol. 56, no. 3, pp. 621–628,  2013.

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep., vol. 6,  2016, Art. no. .

Trans. Nanjing Univ. Aeronaut. Astronaut. (1)

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut., vol. 3, no. 3, pp. 219–240,  2014.

Other (19)

X. Zhanget al., “Electro-optic polymer infiltrated silicon slot photonic crystal waveguide for broadband electromagnetic field sensing,” presented at the Integrated Photonics Research, Silicon Nanophotonics, San Diego, CA, USA, 2014, Paper IW2A. 3.

Q. Yang, S. Sun, R. Han, W. Sima, and T. Liu, “Intense transient electric field sensor based on the electro-optic effect of LiNbO3,” AIP Adv., vol. 5, no. 10,  2015, Art. no. .

J. Santos-Aguilar and C. Gutiérrez-Martínez, “Lithium Niobate (LiNbO 3) optical retarders used as electric field sensors,” in Proc. 7th Int. Conf. Sensing Technol., 2013, pp. 660–664.

G. Gaborit, P. Jarrige, J. Dahdah, L. Gillette, and L. Duvillaret, “Packaged optical sensors for the electric field characterization in harsh environments,” in Proc. Int. Conf. Electromagn. Adv. Appl., 2015, pp. 1468–1471.

PN9000 Phase Noise Test System. (2016). [Online]. Available: http://www.noisext.com/index.php?option=com_content&view=article&id=58&Itemid=194

D. K. Barton, Radar System Analysis and Modeling.Norwood, MA, USA: Artech House, 2004.

V. S. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems. Boca Raton, FL, USA: CRC Press, 1998.

M. Skolnik, Radar Handbook. New York, NY, USA: McGraw-Hill, 2008.

J. Fu and S. Pan, “A fiber-distributed bistatic ultra-wideband radar based on optical time division multiplexing,” in Proc. Int. Top. Meet. Microw. Photon., 2015, pp. 1–4.

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in Proc. 14th Int. Conf. Ground Penetrating Radar,2012.

R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, UWB Sensor Networks for Position Location and Imaging of Objects and Environments.Hoboken, NJ, USA: Wiley, 2009.

D. Hunter, L. Edvell, and M. Englund, “Wideband microwave photonic channelised receiver,” in Proc. Int. Top. Meet. Microw. Photon., 2005, pp. 249–252.

R. Vessot, L. Mueller, and J. Vanier, “A cross-correlation technique for measuring the short-term properties of stable oscillators,” Short-Term Frequency Stability, NASA SP-80, Washington, DC, USA, 1965, p. 111.

E. Salik, N. Yu, L. Maleki, and E. Rubiola, “Dual photonic-delay line cross correlation method for phase noise measurement,” in Proc. IEEE Int. Proc. Freq. Control Symp. Expo., 2004, pp. 303–306.

PHENOMTM phase noise measurement system. (2016). [Online]. Available: http://www.oewaves.com/phase-noise-measurement

S. Pan and J. Yao, Photonics‐Assisted Instantaneous Frequency Measurement.Hoboken, NJ, USA: Wiley, 2012.

J. M. Heatonet al., “16-channel (1-to 16-GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines,” in Proc. Optoelectron. High-Power Lasers Appl., 1998, pp. 245–251.

R. K. Mohan, C. Harrington, T. Sharpe, Z. W. Barber, and W. R. Babbitt, “Broadband multi-emitter signal analysis and direction finding using a dual-port interferometric photonic spectrum analyzer based on spatial-spectral materials,” in Proc. Int. Top. Meet. Microw. Photon., 2013, pp. 241–244.

D. Macias-Valadez, S. LaRochelle, R. Santerre, and B. Filion, “Fiber optic synchronisation architecture for high precision GPS applications,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OWF6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.