Abstract

In contrast to conventional polymer optical fibres (POFs), single-mode microstructured POFs (SM mPOF) exhibit polarization properties that make them potentially interesting for their use in the design and development of polarimetric fibre optic systems. In spite of the theoretical sixfold symmetry of the microstructure that yields zero linear birefringence, a measurement technique reveals us that the SM mPOF behaves as a linear birefringent system with clearly defined optical axes and characteristics. Regarding externally induced birefringence mechanisms acting upon the SM mPOF, either bend- and pressure-induced retardations or twist-induced light rotation follow the behaviour predicted theoretically. More specifically, bend-induced retardation varies linearly with the inverse square of the bending radius of the fibre, and in the case of asymmetrical lateral stress, pressure-induced retardation varies with the applied force. As to twist-induced rotation, the electric field rotates linearly with the angle through which the fibre is twisted. All cases are highly reproducible phenomena that, if used advantageously, may yield useful mPOF-based polarimetric optical devices not exploited yet.

© 2017 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber-optic sensors,” in Proc. IEEE Symp. Photon. Optoelectron., 2012.
  2. K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct., vol. 20, pp. 1–17, 2010.
  3. J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology. West Sussex, U.K.: Wiley, 2002.
  4. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightw. Technol., vol. LT-1, pp. 312–331,  1983.
  5. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt., vol. 19, pp. 2606–2611, 1980.
  6. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt., vol. 18, pp. 2241–2251, 1979.
  7. A. Kumar and R. Ulrich, “Birefringence of optical fiber pressed into a V-groove,” Opt. Lett., vol. 6, pp. 644–646, 1981.
  8. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett., vol. 5, pp. 273–275, 1980.
  9. D. Chardon and S. J. Huard, “A new interferometric and polarimetric temperature optical fiber sensor,” J. Lightw. Technol., vol. LT-4, pp. 720–725,  1986.
  10. W. J. Bock, T. R. Wolinski, and A. Eftimov, “Polarimetric fibre-optic strain gauge using two-mode highly birefringent fibres,” Pure Appl. Opt., vol. 5, pp. 125–139, 1996.
  11. J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.
  12. A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .
  13. J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol., vol. 7, pp. 101–140, 2001.
  14. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008.
  15. P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.
  16. Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.
  17. C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.
  18. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol., vol. 26, 2015, Art. no. .
  19. X. Huet al., “Polarization effects in polymer FBGs: Study and use for transverse force sensing,” Opt. Express, vol. 23, pp. 4581–4590, 2015.
  20. M. A. van Eijkelenborg, “Microstructured polymer optical fibre,” Opt. Express, vol. 9, pp. 319–327, 2001.
  21. M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres. New York, NY, USA: Springer, 2007.
  22. G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .
  23. A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum., vol. 12, pp. 927–930, 1979.
  24. D. H. Goldstein, Polarized Light. Boca Raton, FL, USA: CRC Press, 2003.
  25. M. Born and E. Wolf, Principles of Optics. London, U.K.: Cambridge Univ. Press, 1999.
  26. Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett., vol. 28, pp. 2306–2308, 2003.

2017 (2)

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

2016 (1)

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

2015 (3)

A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol., vol. 26, 2015, Art. no. .

X. Huet al., “Polarization effects in polymer FBGs: Study and use for transverse force sensing,” Opt. Express, vol. 23, pp. 4581–4590, 2015.

2010 (1)

K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct., vol. 20, pp. 1–17, 2010.

2003 (1)

2001 (2)

M. A. van Eijkelenborg, “Microstructured polymer optical fibre,” Opt. Express, vol. 9, pp. 319–327, 2001.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol., vol. 7, pp. 101–140, 2001.

1996 (1)

W. J. Bock, T. R. Wolinski, and A. Eftimov, “Polarimetric fibre-optic strain gauge using two-mode highly birefringent fibres,” Pure Appl. Opt., vol. 5, pp. 125–139, 1996.

1994 (1)

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

1986 (1)

D. Chardon and S. J. Huard, “A new interferometric and polarimetric temperature optical fiber sensor,” J. Lightw. Technol., vol. LT-4, pp. 720–725,  1986.

1983 (1)

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightw. Technol., vol. LT-1, pp. 312–331,  1983.

1981 (1)

1980 (2)

1979 (2)

R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt., vol. 18, pp. 2241–2251, 1979.

A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum., vol. 12, pp. 927–930, 1979.

Aldabaldetreku, G.

G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .

Andre, P.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

Antunes, P.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

Anuszkiewicz, A.

A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .

Arrizabalaga, O.

G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .

Arrue, J.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol., vol. 7, pp. 101–140, 2001.

Barton, G.

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres. New York, NY, USA: Springer, 2007.

Bock, W. J.

W. J. Bock, T. R. Wolinski, and A. Eftimov, “Polarimetric fibre-optic strain gauge using two-mode highly birefringent fibres,” Pure Appl. Opt., vol. 5, pp. 125–139, 1996.

Born, M.

M. Born and E. Wolf, Principles of Optics. London, U.K.: Cambridge Univ. Press, 1999.

Brown, T. G.

Calero, J.

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

Cetinkaya, O.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

Chardon, D.

D. Chardon and S. J. Huard, “A new interferometric and polarimetric temperature optical fiber sensor,” J. Lightw. Technol., vol. LT-4, pp. 720–725,  1986.

Chuang, S. L.

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

Daum, W.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008.

Durana, G.

G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .

Eftimov, A.

W. J. Bock, T. R. Wolinski, and A. Eftimov, “Polarimetric fibre-optic strain gauge using two-mode highly birefringent fibres,” Pure Appl. Opt., vol. 5, pp. 125–139, 1996.

Eickhoff, W.

Goldstein, D. H.

D. H. Goldstein, Polarized Light. Boca Raton, FL, USA: CRC Press, 2003.

Hu, X.

Huard, S. J.

D. Chardon and S. J. Huard, “A new interferometric and polarimetric temperature optical fiber sensor,” J. Lightw. Technol., vol. LT-4, pp. 720–725,  1986.

Illarramendi, M. A.

G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .

Krauser, J.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008.

Krebber, K.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

Kumar, A.

Large, M.

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres. New York, NY, USA: Springer, 2007.

Li, L.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber-optic sensors,” in Proc. IEEE Symp. Photon. Optoelectron., 2012.

Liang, S.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber-optic sensors,” in Proc. IEEE Symp. Photon. Optoelectron., 2012.

Lin, W.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber-optic sensors,” in Proc. IEEE Symp. Photon. Optoelectron., 2012.

Lopez-Higuera, J. M.

J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology. West Sussex, U.K.: Wiley, 2002.

Luo, Y.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Marques, C. A. F.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

Martynkien, T.

A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .

Mergo, P.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

Murtha, J. P.

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

Olszewski, J.

A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .

Peng, G.-D.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Peters, K.

K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct., vol. 20, pp. 1–17, 2010.

Poladian, L.

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres. New York, NY, USA: Springer, 2007.

Pope, C.

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

Rashleigh, S. C.

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightw. Technol., vol. LT-1, pp. 312–331,  1983.

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett., vol. 5, pp. 273–275, 1980.

Schukar, M.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

Simon, A.

Smith, A. M.

A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt., vol. 19, pp. 2606–2611, 1980.

A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum., vol. 12, pp. 927–930, 1979.

Stajanca, P.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

Ulrich, R.

Urbanczyk, P. Mergo, and W.

A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .

van Eijkelenborg, M. A.

M. A. van Eijkelenborg, “Microstructured polymer optical fibre,” Opt. Express, vol. 9, pp. 319–327, 2001.

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres. New York, NY, USA: Springer, 2007.

Webb, D. J.

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol., vol. 26, 2015, Art. no. .

Wen, J.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Wolf, E.

M. Born and E. Wolf, Principles of Optics. London, U.K.: Cambridge Univ. Press, 1999.

Wolinski, T. R.

W. J. Bock, T. R. Wolinski, and A. Eftimov, “Polarimetric fibre-optic strain gauge using two-mode highly birefringent fibres,” Pure Appl. Opt., vol. 5, pp. 125–139, 1996.

Wu, S.-P.

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

Yan, B.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Zamzow, P. E.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008.

Zhang, C.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber-optic sensors,” in Proc. IEEE Symp. Photon. Optoelectron., 2012.

Zhang, J.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Zhang, Q.

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Zhu, Z.

Ziemann, O.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008.

Zubia, J.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol., vol. 7, pp. 101–140, 2001.

G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

C. A. F. Marques, P. Antunes, P. Mergo, D. J. Webb, and P. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett., vol. 29, pp. 500–503,  2017.

J. Lightw. Technol. (3)

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightw. Technol., vol. LT-1, pp. 312–331,  1983.

J. Calero, S.-P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, “Theory and experiments on birefringent optical fibers embedded in concrete structures,” J. Lightw. Technol., vol. 12, pp. 1081–1091,  1994.

D. Chardon and S. J. Huard, “A new interferometric and polarimetric temperature optical fiber sensor,” J. Lightw. Technol., vol. LT-4, pp. 720–725,  1986.

J. Opt. (1)

A. Anuszkiewicz, T. Martynkien, J. Olszewski, P. Mergo, and W. Urbanczyk, “Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure,” J. Opt., vol. 17, 2015, Art. no. .

J. Phys. E: Sci. Instrum. (1)

A. M. Smith, “Automated birefringence measurement system,” J. Phys. E: Sci. Instrum., vol. 12, pp. 927–930, 1979.

Meas. Sci. Technol. (1)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol., vol. 26, 2015, Art. no. .

Opt. Express (2)

Opt. Fiber Technol. (2)

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol., vol. 7, pp. 101–140, 2001.

P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Opt. Fiber Technol., vol. 28, pp. 11–17, 2016.

Opt. Lett. (3)

Pure Appl. Opt. (1)

W. J. Bock, T. R. Wolinski, and A. Eftimov, “Polarimetric fibre-optic strain gauge using two-mode highly birefringent fibres,” Pure Appl. Opt., vol. 5, pp. 125–139, 1996.

Sensors (1)

Y. Luo, B. Yan, Q. Zhang, G.-D. Peng, J. Wen, and J. Zhang, “Fabrication of polymer optical fibre (POF) gratings,” Sensors, vol. 17, p. 511, 2017.

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—A review,” Smart Mater. Struct., vol. 20, pp. 1–17, 2010.

Other (7)

J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology. West Sussex, U.K.: Wiley, 2002.

W. Lin, C. Zhang, L. Li, and S. Liang, “Review on development and applications of fiber-optic sensors,” in Proc. IEEE Symp. Photon. Optoelectron., 2012.

D. H. Goldstein, Polarized Light. Boca Raton, FL, USA: CRC Press, 2003.

M. Born and E. Wolf, Principles of Optics. London, U.K.: Cambridge Univ. Press, 1999.

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres. New York, NY, USA: Springer, 2007.

G. Durana, O. Arrizabalaga, G. Aldabaldetreku, M. A. Illarramendi, and J. Zubia, “Stress-based mechanisms in polymer mPOFs for fibre optic sensing,” Proc. SPIE, vol. 9157, 2014, Art. no. .

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.