Abstract

We present a thorough description of the dominating intramodal and intermodal four-wave mixing interactions occurring in a highly nonlinear few-mode fiber and describe their phase matching conditions. Those interactions that result in few-mode parametric amplification using a single-frequency pump are of particular interest. Thus, based on the phase matching conditions of such interactions, we outline the dispersion properties that a fiber should possess in order to achieve few-mode parametric amplification, while having minimal modal crosstalk. Accordingly, we design and optimize two fibers such that they meet the dispersion requirements for parametric amplification of two and four spatial modes, respectively. The two-mode fiber provides a maximum differential modal gain (DMG) of 0.21 dB across the C-band with a minimum gain of 9.5 dB per mode, while the four-mode fiber provides a maximum DMG of 1.51 dB with a minimum gain of 6.5 dB per mode over a 19 nm bandwidth in the C-band. The designed fibers are highly nonlinear dispersion-shifted few-mode fibers that provide both high nonlinearity and low dispersion for several modes in the C-band, which have not been demonstrated simultaneously to date. We also take practical fabrication issues into account and analyze and compare the tolerances of the structural parameters of both fibers to small deviations from their optimal values.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013.
  3. R. Ryfet al., “Mode-division multiplexing over 96 Km of few-mode fiber using coherent 6 $\times$ 6 MIMO processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.
  4. C. Koebeleet al., “40 km Transmission of five mode division multiplexed data streams at 100 Gb/S with low MIMO-DSP complexity,” in Proc. Eur. Conf. Opt. Commun., Geneva, Switzerland, 2011, Paper Th.13.C.3.
  5. R. G. H. Van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014.
  6. B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.1.
  7. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett., vol. 24, pp. 308–310, 1974.
  8. C. Lin and M. A. Bösch, “Large-Stokes-shift stimulated four-photon mixing in optical fibers,” Appl. Phys. Lett., vol. 38, pp. 479–481, 1981.
  9. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Efficient conversion of light over a wide spectral range by four-photon mixing in a multimode graded-index fiber,” Appl. Opt., vol. 20, pp. 1075–1079, 1981.
  10. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1062–1072,  1982.
  11. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 25, pp. 1645–1654, 2008.
  12. A. Mafi, “Pulse propagation in a short nonlinear graded-index multimode optical fiber,” J. Lightw. Technol., vol. 30, no. 17, pp. 2803–2811,  2012.
  13. A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express, vol. 20, pp. 11673–11678, 2012.
  14. S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightw. Technol., vol. 31, no. 3, pp. 398–406,  2013.
  15. R.-J. Essiambreet al., “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 539–542,  2013.
  16. Y. Xiaoet al., “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express, vol. 22, pp. 32039–32059, 2014.
  17. H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express, vol. 23, pp. 14487–14500, 2015.
  18. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fiber,” Optica, vol. 2, pp. 14–17, 2015.
  19. E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 33, pp. 144–150, 2016.
  20. S. M. M. Friiset al., “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express, vol. 24, pp. 30338–30349, 2016.
  21. E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Amer. B, vol. 30, pp. 1357–1367, 2013.
  22. K. Krupaet al., “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .
  23. G. Lopez-Galmicheet al., “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett., vol. 41, pp. 2553–2556, 2016.
  24. E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express, vol. 21, pp. 30739–30745, 2013.
  25. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nature Photon., vol. 9, pp. 306–310, 2015.
  26. S. Fuet al., “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express, vol. 23, pp. 17255–17262, 2015.
  27. N. Baiet al., “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express, vol. 20, pp. 2668–2680, 2012.
  28. R. Ryfet al., “Mode-equalized distributed Raman amplification in 137-km few-mode fiber,” in Proc. Eur. Conf. Opt. Commun., Geneva, Switzerland, 2011, Paper Th.13.K.5.
  29. N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.
  30. M. Guasoni, “Generalized modulational instability in multimode fibers: Wideband multimode parametric amplification,” Phys. Rev. A, vol. 92, 2015, Art. no. .
  31. W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.
  32. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.
  33. Z. Tonget al., “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nature Photon., vol. 5, pp. 430–436, 2011.
  34. E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Highly nonlinear few-mode fiber for optical parametric amplification,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, 2016, Paper W.4.P1.SC1.7.
  35. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.
  36. K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in Ge$\mathrm{O_{2}}$ and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 492–494,  2002.
  37. C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express, vol. 12, pp. 5037–5066, 2004.
  38. J. W. Fleming, “Dispersion in GeO$_{\text{2}}$-SiO$_{\text{2}}$ glasses,” Appl. Opt., vol. 23, pp. 4486–4493, 1984.
  39. J. M. Senior, Optical Fiber Communications: Principles and Practice, 3rd ed., Upper Saddle River, NJ, USA: Pearson, 2009.
  40. V. M. Mashinskyet al., “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: Optical losses, photorefractivity, and Raman amplification,” Opt. Lett., vol. 29, pp. 2596–2598, 2004.
  41. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: A study of light propagation in multimode to single-mode converters,” Opt. Express, vol. 18, pp. 8430–8439, 2010.
  42. J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightw. Technol., vol. 30, no. 10, pp. 1386–1392,  2012.
  43. G. P. Agrawal, Lightwave Technology: Components and Devices, 4th ed. Hoboken, NJ, USA: Wiley, 2004, p. 26.

2016 (4)

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 33, pp. 144–150, 2016.

S. M. M. Friiset al., “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express, vol. 24, pp. 30338–30349, 2016.

K. Krupaet al., “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .

G. Lopez-Galmicheet al., “Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm,” Opt. Lett., vol. 41, pp. 2553–2556, 2016.

2015 (6)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nature Photon., vol. 9, pp. 306–310, 2015.

S. Fuet al., “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express, vol. 23, pp. 17255–17262, 2015.

M. Guasoni, “Generalized modulational instability in multimode fibers: Wideband multimode parametric amplification,” Phys. Rev. A, vol. 92, 2015, Art. no. .

W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express, vol. 23, pp. 14487–14500, 2015.

J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, and S. Ramachandran, “Intermodal nonlinear mixing with Bessel beams in optical fiber,” Optica, vol. 2, pp. 14–17, 2015.

2014 (2)

Y. Xiaoet al., “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express, vol. 22, pp. 32039–32059, 2014.

R. G. H. Van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014.

2013 (5)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightw. Technol., vol. 31, no. 3, pp. 398–406,  2013.

R.-J. Essiambreet al., “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 539–542,  2013.

E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express, vol. 21, pp. 30739–30745, 2013.

E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Amer. B, vol. 30, pp. 1357–1367, 2013.

2012 (5)

N. Baiet al., “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express, vol. 20, pp. 2668–2680, 2012.

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightw. Technol., vol. 30, no. 10, pp. 1386–1392,  2012.

A. Mafi, “Pulse propagation in a short nonlinear graded-index multimode optical fiber,” J. Lightw. Technol., vol. 30, no. 17, pp. 2803–2811,  2012.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express, vol. 20, pp. 11673–11678, 2012.

R. Ryfet al., “Mode-division multiplexing over 96 Km of few-mode fiber using coherent 6 $\times$ 6 MIMO processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.

2011 (1)

Z. Tonget al., “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nature Photon., vol. 5, pp. 430–436, 2011.

2010 (2)

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: A study of light propagation in multimode to single-mode converters,” Opt. Express, vol. 18, pp. 8430–8439, 2010.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

2008 (1)

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 25, pp. 1645–1654, 2008.

2004 (2)

2002 (2)

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in Ge$\mathrm{O_{2}}$ and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 492–494,  2002.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

1984 (1)

1982 (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1062–1072,  1982.

1981 (2)

C. Lin and M. A. Bösch, “Large-Stokes-shift stimulated four-photon mixing in optical fibers,” Appl. Phys. Lett., vol. 38, pp. 479–481, 1981.

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Efficient conversion of light over a wide spectral range by four-photon mixing in a multimode graded-index fiber,” Appl. Opt., vol. 20, pp. 1075–1079, 1981.

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett., vol. 24, pp. 308–310, 1974.

Agrawal, G. P.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightw. Technol., vol. 31, no. 3, pp. 398–406,  2013.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.

G. P. Agrawal, Lightwave Technology: Components and Devices, 4th ed. Hoboken, NJ, USA: Wiley, 2004, p. 26.

Amezcua-Correa, R.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Highly nonlinear few-mode fiber for optical parametric amplification,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, 2016, Paper W.4.P1.SC1.7.

Antonelli, C.

Argyros, A.

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett., vol. 24, pp. 308–310, 1974.

Bai, N.

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1062–1072,  1982.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett., vol. 24, pp. 308–310, 1974.

Bland-Hawthorn, J.

Bösch, M. A.

C. Lin and M. A. Bösch, “Large-Stokes-shift stimulated four-photon mixing in optical fibers,” Appl. Phys. Lett., vol. 38, pp. 479–481, 1981.

Carpenter, J.

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightw. Technol., vol. 30, no. 10, pp. 1386–1392,  2012.

Chen, Y.

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nature Photon., vol. 9, pp. 306–310, 2015.

Demas, J.

Essiambre, R.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightw. Technol., vol. 31, no. 3, pp. 398–406,  2013.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

Essiambre, R.-J.

R.-J. Essiambreet al., “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 539–542,  2013.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013.

Fleming, J. W.

Foschini, G. J.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

Friis, S. M. M.

Fu, S.

Gao, Sh.

W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.

Goebel, B.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

Guasoni, M.

M. Guasoni, “Generalized modulational instability in multimode fibers: Wideband multimode parametric amplification,” Phys. Rev. A, vol. 92, 2015, Art. no. .

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

Hill, K. O.

Horak, P.

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 25, pp. 1645–1654, 2008.

Huang, B.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.

Jin, Q.

W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.

Johnson, D. C.

Karlsson, M.

E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Highly nonlinear few-mode fiber for optical parametric amplification,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, 2016, Paper W.4.P1.SC1.7.

Kawasaki, B. S.

Koebele, C.

C. Koebeleet al., “40 km Transmission of five mode division multiplexed data streams at 100 Gb/S with low MIMO-DSP complexity,” in Proc. Eur. Conf. Opt. Commun., Geneva, Switzerland, 2011, Paper Th.13.C.3.

Kramer, G.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

Krupa, K.

K. Krupaet al., “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .

Leon-Saval, S. G.

Li, G.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

Li, X.

W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.

Lin, C.

C. Lin and M. A. Bösch, “Large-Stokes-shift stimulated four-photon mixing in optical fibers,” Appl. Phys. Lett., vol. 38, pp. 479–481, 1981.

Lopez-Galmiche, G.

Lorences-Riesgo, A.

E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Highly nonlinear few-mode fiber for optical parametric amplification,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, 2016, Paper W.4.P1.SC1.7.

Mafi, A.

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 33, pp. 144–150, 2016.

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express, vol. 23, pp. 14487–14500, 2015.

E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express, vol. 21, pp. 30739–30745, 2013.

E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Amer. B, vol. 30, pp. 1357–1367, 2013.

A. Mafi, “Pulse propagation in a short nonlinear graded-index multimode optical fiber,” J. Lightw. Technol., vol. 30, no. 17, pp. 2803–2811,  2012.

Mashinsky, V. M.

McKinstrie, C. J.

Mecozzi, A.

Mumtaz, S.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightw. Technol., vol. 31, no. 3, pp. 398–406,  2013.

Nakajima, K.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in Ge$\mathrm{O_{2}}$ and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 492–494,  2002.

Nazemosadat, E.

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 33, pp. 144–150, 2016.

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express, vol. 23, pp. 14487–14500, 2015.

E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Amer. B, vol. 30, pp. 1357–1367, 2013.

E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express, vol. 21, pp. 30739–30745, 2013.

E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Highly nonlinear few-mode fiber for optical parametric amplification,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, 2016, Paper W.4.P1.SC1.7.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013.

Ohashi, M.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in Ge$\mathrm{O_{2}}$ and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 492–494,  2002.

Pan, W.

W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.

Poletti, F.

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 25, pp. 1645–1654, 2008.

Pourbeyram, H.

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 33, pp. 144–150, 2016.

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express, vol. 23, pp. 14487–14500, 2015.

Puttnam, B. J.

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.1.

Radic, S.

Ramachandran, S.

Raymer, M. G.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013.

Rishøj, L.

Ryf, R.

R. Ryfet al., “Mode-division multiplexing over 96 Km of few-mode fiber using coherent 6 $\times$ 6 MIMO processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.

R. Ryfet al., “Mode-equalized distributed Raman amplification in 137-km few-mode fiber,” in Proc. Eur. Conf. Opt. Commun., Geneva, Switzerland, 2011, Paper Th.13.K.5.

Senior, J. M.

J. M. Senior, Optical Fiber Communications: Principles and Practice, 3rd ed., Upper Saddle River, NJ, USA: Pearson, 2009.

Shtaif, M.

Steinvurzel, P.

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1062–1072,  1982.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett., vol. 24, pp. 308–310, 1974.

Tai, B.

Tong, Z.

Z. Tonget al., “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nature Photon., vol. 5, pp. 430–436, 2011.

Uden, R. G. H. Van

R. G. H. Van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

Wilkinson, T. D.

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightw. Technol., vol. 30, no. 10, pp. 1386–1392,  2012.

Winzer, P. J.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nature Photon., vol. 9, pp. 306–310, 2015.

Wright, L. G.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nature Photon., vol. 9, pp. 306–310, 2015.

Xiao, Y.

Zhao, N.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett., vol. 24, pp. 308–310, 1974.

C. Lin and M. A. Bösch, “Large-Stokes-shift stimulated four-photon mixing in optical fibers,” Appl. Phys. Lett., vol. 38, pp. 479–481, 1981.

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron., vol. 18, no. 7, pp. 1062–1072,  1982.

IEEE J. Sel. Topics Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520,  2002.

IEEE Photon. Technol. Lett. (2)

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in Ge$\mathrm{O_{2}}$ and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 492–494,  2002.

R.-J. Essiambreet al., “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 539–542,  2013.

J. Lightw. Technol. (5)

A. Mafi, “Pulse propagation in a short nonlinear graded-index multimode optical fiber,” J. Lightw. Technol., vol. 30, no. 17, pp. 2803–2811,  2012.

S. Mumtaz, R. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations,” J. Lightw. Technol., vol. 31, no. 3, pp. 398–406,  2013.

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701,  2010.

R. Ryfet al., “Mode-division multiplexing over 96 Km of few-mode fiber using coherent 6 $\times$ 6 MIMO processing,” J. Lightw. Technol., vol. 30, no. 4, pp. 521–531,  2012.

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightw. Technol., vol. 30, no. 10, pp. 1386–1392,  2012.

J. Opt. Soc. Amer. B (4)

W. Pan, Q. Jin, X. Li, and Sh. Gao, “All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber,” J. Opt. Soc. Amer. B, vol. 32, pp. 2417–2424, 2015.

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 25, pp. 1645–1654, 2008.

E. Nazemosadat, H. Pourbeyram, and A. Mafi, “Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers,” J. Opt. Soc. Amer. B, vol. 33, pp. 144–150, 2016.

E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Amer. B, vol. 30, pp. 1357–1367, 2013.

Nature Photon. (4)

R. G. H. Van Udenet al., “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nature Photon., vol. 8, pp. 865–870, 2014.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nature Photon., vol. 7, pp. 354–362, 2013.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Controllable spatiotemporal nonlinear effects in multimode fibres,” Nature Photon., vol. 9, pp. 306–310, 2015.

Z. Tonget al., “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nature Photon., vol. 5, pp. 430–436, 2011.

Opt. Express (9)

C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express, vol. 12, pp. 5037–5066, 2004.

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: A study of light propagation in multimode to single-mode converters,” Opt. Express, vol. 18, pp. 8430–8439, 2010.

N. Baiet al., “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express, vol. 20, pp. 2668–2680, 2012.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,” Opt. Express, vol. 20, pp. 11673–11678, 2012.

E. Nazemosadat and A. Mafi, “Nonlinear switching in multicore versus multimode waveguide junctions for mode-locked laser applications,” Opt. Express, vol. 21, pp. 30739–30745, 2013.

Y. Xiaoet al., “Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers,” Opt. Express, vol. 22, pp. 32039–32059, 2014.

H. Pourbeyram, E. Nazemosadat, and A. Mafi, “Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green,” Opt. Express, vol. 23, pp. 14487–14500, 2015.

S. Fuet al., “Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference,” Opt. Express, vol. 23, pp. 17255–17262, 2015.

S. M. M. Friiset al., “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express, vol. 24, pp. 30338–30349, 2016.

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

M. Guasoni, “Generalized modulational instability in multimode fibers: Wideband multimode parametric amplification,” Phys. Rev. A, vol. 92, 2015, Art. no. .

Phys. Rev. Lett. (1)

K. Krupaet al., “Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves,” Phys. Rev. Lett., vol. 116, 2016, Art. no. .

Other (8)

B. J. Puttnamet al., “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in Proc. Eur. Conf. Opt. Commun., Valencia, Spain, 2015, Paper PDP 3.1.

C. Koebeleet al., “40 km Transmission of five mode division multiplexed data streams at 100 Gb/S with low MIMO-DSP complexity,” in Proc. Eur. Conf. Opt. Commun., Geneva, Switzerland, 2011, Paper Th.13.C.3.

R. Ryfet al., “Mode-equalized distributed Raman amplification in 137-km few-mode fiber,” in Proc. Eur. Conf. Opt. Commun., Geneva, Switzerland, 2011, Paper Th.13.K.5.

N. Zhao, B. Huang, R. Amezcua-Correa, X. Li, and G. Li, “Few-mode fiber optical parametric amplifier,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2013, Paper OTu2D.5.

E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, and P. A. Andrekson, “Highly nonlinear few-mode fiber for optical parametric amplification,” in Proc. Eur. Conf. Opt. Commun., Düsseldorf, Germany, 2016, Paper W.4.P1.SC1.7.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.

G. P. Agrawal, Lightwave Technology: Components and Devices, 4th ed. Hoboken, NJ, USA: Wiley, 2004, p. 26.

J. M. Senior, Optical Fiber Communications: Principles and Practice, 3rd ed., Upper Saddle River, NJ, USA: Pearson, 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.