Abstract

Future generation mobile communications running on mm-wave frequencies will require great robustness against frequency selective channels. In this paper, we evaluate the transmission performance of 4.9 Gb/s wavelet-coded orthogonal frequency division multiplexing (OFDM) signals on a 10 km fiber plus 58 m wireless radio-over-fiber link using a mm-wave radio frequency carrier. The results show that a 2 × 128 wavelet-coded OFDM system achieves a bit-error rate of 1e-4 with nearly 2.5 dB less signal-to-noise ratio than a convolutional coded OFDM system with equivalent spectral efficiency for 8 GHz-wide signals with 512 subcarriers on a carrier frequency of 86 GHz. Our findings confirm the Tzannes’ theory that wavelet coding enables high diversity gains with a low complexity receiver and, most notably, without compromising the system's spectral efficiency.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription