Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 14,
  • pp. 2772-2777
  • (2017)

Magneto-Modulating Polarization Converter Based on a Dual-Core Photonic Crystal Fiber

Not Accessible

Your library or personal account may give you access

Abstract

A magneto-modulating polarization converter (PC) based on a new type dual-core photonic crystal fiber (DCPCF) is proposed and analyzed. In DCPCF, the two cores are surrounded by a central circular air hole and two lateral elliptical air holes in the horizontal axis. The central air hole is filled with magnetic fluids (MF). Without external magnetic field, DCPCF acts as a simple polarization splitter. When magnetic field applied, due to the refractive index of MF varying with the magnetic field magnitude, the intensities of the two polarization modes would interchange alternately. At a certain magnetic field, the two polarization modes would rotate 90° at the output ports. In this case, a magneto-modulating PC is realized. The performance of the PC is analyzed by the finite element method. The simulation results show that the length of the PC is 1007 μm. The polarization mode conversion can be realized at a magnetic field magnitude of 40.5 mT with a room temperature 21 °C. A high extinction ratio greater than 70 dB is obtained for mode-conversion around 1550 nm wavelength. In addition, the PC works well in the temperature range from 0 °C to 60 °C by regulating the magnetic field magnitude. The optical fiber-based PC eliminates the silicon-on-insulator circuit chip, which can be integrated with optical system easily and conveniently.

© 2017 IEEE

PDF Article
More Like This
Ultrashort polarization beam splitter based on liquid-filled dual-core photonic crystal fiber

Jianshuai Wang, Li Pei, Sijun Weng, Liangying Wu, Jing Li, and Tigang Ning
Appl. Opt. 57(14) 3847-3852 (2018)

Ultra-short polarization beam splitter based on rhombic structure dual-core photonic crystal fiber with a central hole filled nematic liquid crystal

Yanan Xu, Jinhui Yuan, Yuwei Qu, Shi Qiu, Xian Zhou, Binbin Yan, Kuiru Wang, Xinzhu Sang, and Chongxiu Yu
J. Opt. Soc. Am. B 40(1) 206-214 (2023)

Polarization splitter based on dual-core photonic crystal fiber

Haiming Jiang, Erlei Wang, Jing Zhang, Lei Hu, Qiuping Mao, Qian Li, and Kang Xie
Opt. Express 22(25) 30461-30466 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.