Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 10,
  • pp. 1797-1802
  • (2017)

Temperature-Tolerant Wavelength-Setting and -Stabilization in a Polymer-Based Tunable DBR Laser

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a method of self-detection of mode hops in a distributed Bragg reflector tunable laser using the voltage drop in the active section as a monitoring signal. Based on this method, a wavelength setting and stabilization algorithm that is tolerant to temperature variations is proposed. Wavelength locking for a period of more than seven days with an accuracy better than ±1.25 GHz has been achieved, meeting the ITU-T standard for 25 GHz channel spacing. Under forced changes in the operation temperature from 15° to 60°, with variations of 0.1°/s, the maximum allowed deviation of ±2.5 GHz for the ITU-T standard with 50 GHz channel spacing was kept.

© 2017 IEEE

PDF Article
More Like This
Suppression of thermal wavelength drift in widely tunable DS-DBR laser for fast channel-to-channel switching

Sanghwa Yoo, Joon Ki Lee, and Kwangjoon Kim
Opt. Express 25(24) 30406-30417 (2017)

Dual-wavelength DBR laser integrated with high-speed EAM for THz communications

Yunlong Liu, Qiang Tang, Lichen Zhang, Xiaobo La, Lingjuan Zhao, Wei Wang, and Song Liang
Opt. Express 28(7) 10542-10551 (2020)

Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings

Young-Ouk Noh, Hyung-Jong Lee, Jung Jin Ju, Min-su Kim, Su Hwan Oh, and Min-Cheol Oh
Opt. Express 16(22) 18194-18201 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved