Abstract

This paper presents novel experimental results for a 10 Gb/s triple-hop relay-based all-optical free space optical (FSO) system by employing the amplify-and-forward relaying scheme. We provide a mathematical framework for the end–end signal-to-noise ratio (SNR) and the bit-error rate (BER) performance and confirm that the derived analytical results reasonably match experimental results especially at relatively high SNR. The evaluated BER performances under different atmospheric turbulence regimes (modeled by the Gamma–Gamma distribution) show that the considered relay-assisted FSO system offers a significant performance improvement for weak-to-strong turbulence regimes, even without knowledge of the channel state information. More precisely, at a target BER of 10–5, the proposed scheme offers ∼5 and ∼4 dB of SNR gains compared to the direct transmission for turbulence strengths $\ {\boldsymbol C}_{\boldsymbol n}^2$ of $3.8 \times {10^{ - 10}}\,{{\rm{m}}^{ - 2/3}}$ and $5.4\times 10^{-12}\,{{\rm{m}}^{ - 2/3}}$ , respectively.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription