Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 3,
  • pp. 1025-1030
  • (2016)

Fiber Temperature Sensor Utilizing a Thermomechanical MEMS Detector

Not Accessible

Your library or personal account may give you access

Abstract

We propose a novel fiber sensor utilizing a thermomechanical MEMS element at the fiber tip. Owing to its Parylene/Titanium bimaterial structure, the MEMS membrane exhibits an out-of-plane displacement with changing temperature. Together with the MEMS element, the embedded diffraction grating forms an in-line interferometer, from which the displacement as well as the temperature can be deduced. The fabricated detector is placed at the single-mode fiber output that is collimated via a graded index lens. This novel architecture allows for integrating MEMS detectors on standard optical fibers, and easy substitution of the MEMS detector element to alter the measurement range and the response time of the sensor. Temperature and time-constant measurements are provided and verified with reference measurements, revealing a temperature sensitivity better than 20 mK and 2.5-ms response time, using low-cost laser source and photodetectors.

© 2015 IEEE

PDF Article
More Like This
Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber

Fabio Alves, Dragoslav Grbovic, Brian Kearney, and Gamani Karunasiri
Opt. Lett. 37(11) 1886-1888 (2012)

Batch-producible MEMS fiber-optic Fabry–Perot pressure sensor for high-temperature application

Pinggang Jia, Hao Liang, Guocheng Fang, Jiang Qian, Fei Feng, Ting Liang, and Jijun Xiong
Appl. Opt. 57(23) 6687-6692 (2018)

High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing

Xue Wang, Shuang Wang, Junfeng Jiang, Kun Liu, Peng Zhang, Wen Wu, and Tiegen Liu
Opt. Express 27(4) 4204-4215 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.