Abstract

We report on the design, fabrication, and characterization of millimeter-length strip waveguides with monolithic grating couplers in commercially available synthetic single-crystal diamond. To minimize the device footprint and the influence of the wafer wedge of the single-crystal diamond thin plate, we adopt a curled waveguide layout. The devices are fabricated using electron-beam lithography and reactive-ion etching. To improve the e-beam patterning accuracy of the grating etch masks, we apply proximity-effect compensation on the gratings and tapers. The linear characterization results indicate a waveguide attenuation of 6.5 dB/mm and a grating transmission of -6.3 dB in the fiber-optic communication C band. These results demonstrate the feasibility of fabricating long waveguides and integrated grating couplers in single-crystal diamond. Our research findings would be beneficial for further exploring quantum and nonlinear optics in integrated single-crystal diamond devices.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription