Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 23,
  • pp. 5542-5553
  • (2016)

Sensitivity Improvement in 100 Gb/s-per-Wavelength Links Using Semiconductor Optical Amplifiers or Avalanche Photodiodes

Not Accessible

Your library or personal account may give you access

Abstract

Intra-data-center links are scaling to 100 Gb/s per wavelength using four-level pulse-amplitude modulation (4-PAM) and direct detection, but a restrictive link budget makes it difficult to support wavelength-division multiplexing or optical circuit switching. We investigate receiver sensitivity improvements achievable using semiconductor optical amplifiers (SOAs) or avalanche photodiodes (APDs). We analyze and simulate the impact of modulator bandwidth limitations and chirp, fiber dispersion, transient SOA gain saturation, excess shot noise, and intersymbol interference caused by the APD. Using the 4-PAM and linear equalization, an SOA with 20-dB fiber-to-fiber gain and 6-dB noise figure can improve the receiver sensitivity up to 6 dB over a thermal noise-limited receiver, whereas an APD with $k_{{\rm{A}}}\,= \,0.18$ and responsivity $R\,= \,{\rm{0.74\,A/ W}}$ provides 4.5-dB sensitivity improvement over the same reference system. We further present a simple algorithm to optimize the intensity levels and decision thresholds for a generic non-Gaussian noise distribution, which can provide an additional sensitivity improvement of 12 dB. For SOAs, transient gain saturation effects cause negligible sensitivity penalties, but limit the receiver dynamic range to about 15 dB for the worst case of single-wavelength pre-amplification. For APDs, we show that the APD responsivity, impact ionization factor, low-gain bandwidth, and gain-bandwidth product are all critical parameters governing the system performance.

© 2016 IEEE

PDF Article
More Like This
Breaking the buildup-time limit of sensitivity in avalanche photodiodes by dynamic biasing

Majeed M. Hayat, Payman Zarkesh-Ha, Georges El-Howayek, Robert Efroymson, and Joe C. Campbell
Opt. Express 23(18) 24035-24041 (2015)

64  Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors

Binhao Wang, Zhihong Huang, Yuan Yuan, Di Liang, Xiaoge Zeng, Marco Fiorentino, and Raymond G. Beausoleil
Photon. Res. 8(7) 1118-1123 (2020)

High sensitivity 10Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens
Opt. Express 23(2) 815-822 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.