Abstract

The increasing number of computational servers in data centers is imposing tighter constraints on the networking infrastructure. Scalable power efficient optical interconnect network becomes necessary to leverage the bandwidth capacity of current electronic switches or opto-electronic components. Hence, novel optical interconnect technology can enhance the network capacity by harnessing the feasibility of simultaneous processing of optical signal in the wavelength and time domains. In this paper, we present a four channel optical passive wavelength-striped mapping (PWSM) device, which passively time compresses/expands serial packets through optical wavelength multiplexing/demultiplexing. The PWSM device, which has a 1 $\times$ 4 channel optical wavelength demultiplexer with integrated optical delay lines, is designed in a low-loss Si $_{3}$ N $_{4}$ (propagation loss $\sim$ 3.1 dB/m) waveguide platform. The PWSM device multiplexes/demultiplexes four WDM channels and offsets in time the adjacent channels to optically serialize/de-serialize data packets. In this demonstration, a 64 ns long data packet is formed at the output of the device by combining four 16 ns data segments of the packet in time domain. Incremental optical insertion loss between adjacent channels is $\sim$ 9.7 dB due to the integrated passive optical delay waveguides. The data rate of the four segmented packets and the combined packet is 25 Gb/sec. We have measured a bit error rate performance below 1 $\times 10^{-9}$ for the 64 ns serial data packet regenerated by the PWSM device for a received optical power of 6.7dBm.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.
  2. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730
  3. V. Soteriou and L.-S. Peh, Exploring the design space of self-regulating power-aware on/off interconnection networks, IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3, pp. 393408, 2007.
  4. J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.
  5. C. Menolfiet al., A 25Gb/s PAM4 transmitter in 90nm CMOS SOI, in Proc. IEEE Int. Solid-State Circuits Conf., 2005, pp. 7273.
  6. T. Toiflet al., A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology, IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954965, 2006.
  7. H. Kimuraet al., A 28 Gb/s 560 mW multi-standard SerDes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS, IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 30913103, 2014.
  8. L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.
  9. C. P. Lai and K. Bergman, Broadband multicasting for wavelength-striped optical packets, J. Lightw. Technol., vol. 30, no. 11, pp. 17061718, 2012.
  10. O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, Low-power, transparent optical network interface for high bandwidth off-chip interconnects, Opt. Express, vol. 17, no. 8, pp. 65506561, 2009.
  11. I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.
  12. P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.
  13. J. F. Bauterset al., Ultra-low-loss high-aspect-ratio Si$_{3}$N$_{4}$ waveguides, Opt. Express, vol. 19, no. 4, pp. 31633174, 2011.
  14. M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.
  15. C. F. Lam, H. Liu, and R. Urata, What devices do data centers need? in Proc. Opt. Fiber Commun. Conf., 2014, Paper. M2K.5.
  16. G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2002.
  17. D. Daiet al., Low-loss Si$_{3}$N$_{4}$ arrayed-waveguide grating (De)multiplexer using nano-core optical waveguides, Opt. Express, vol. 19, no. 15, pp. 1413014136, 2011.
  18. D. Daiet al., Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers, in Proc. 7th IEEE Int. Conf. Group IV Photon., 2010, pp. 260262.
  19. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, Cascaded MachZehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (De-)multiplexing, Opt. Express, vol. 21, no. 10, pp. 1165211658, 2013.
  20. N. Sahriet al., A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers, in Proc. Opti. Fiber Commun. Conf., 2001, vol. 4, Paper. PD32.
  21. S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.
  22. S. Tanakaet al., Monolithically Integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range, IEEE J. Quantum Electron., vol. 45, no. 9, pp. 11551162, 2009.
  23. G. Maxwellet al., Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly, in Proc. 55th Electron. Compon Technol. Conf., 2005, vol. 2, pp. 13491352.
  24. J. F. Bauterset al., Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding, Opt. Express, vol. 19, no. 24, pp. 2409024101, 2011.
  25. Lenovo, RackSwitch G8264 & G8264T, 2015. [Online]. Available: https://lenovopress.com/tips0815

2015 (2)

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.

2014 (1)

H. Kimuraet al., A 28 Gb/s 560 mW multi-standard SerDes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS, IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 30913103, 2014.

2013 (2)

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, Cascaded MachZehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (De-)multiplexing, Opt. Express, vol. 21, no. 10, pp. 1165211658, 2013.

2012 (1)

C. P. Lai and K. Bergman, Broadband multicasting for wavelength-striped optical packets, J. Lightw. Technol., vol. 30, no. 11, pp. 17061718, 2012.

2011 (4)

2010 (1)

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.

2009 (2)

S. Tanakaet al., Monolithically Integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range, IEEE J. Quantum Electron., vol. 45, no. 9, pp. 11551162, 2009.

O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, Low-power, transparent optical network interface for high bandwidth off-chip interconnects, Opt. Express, vol. 17, no. 8, pp. 65506561, 2009.

2007 (2)

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

V. Soteriou and L.-S. Peh, Exploring the design space of self-regulating power-aware on/off interconnection networks, IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3, pp. 393408, 2007.

2006 (1)

T. Toiflet al., A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology, IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954965, 2006.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2002.

Al-Fares, M.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730

Andriolli, N.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.

Aoki, Y.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

Assefa, S.

Bauters, J. F.

Bergman, K.

C. P. Lai and K. Bergman, Broadband multicasting for wavelength-striped optical packets, J. Lightw. Technol., vol. 30, no. 11, pp. 17061718, 2012.

O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, Low-power, transparent optical network interface for high bandwidth off-chip interconnects, Opt. Express, vol. 17, no. 8, pp. 65506561, 2009.

Castoldi, P.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.

Cerutti, I.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.

Chen, L.-Y.

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

Chiang, P.-C.

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

Dai, D.

D. Daiet al., Low-loss Si$_{3}$N$_{4}$ arrayed-waveguide grating (De)multiplexer using nano-core optical waveguides, Opt. Express, vol. 19, no. 15, pp. 1413014136, 2011.

D. Daiet al., Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers, in Proc. 7th IEEE Int. Conf. Group IV Photon., 2010, pp. 260262.

Garg, A. S.

Glick, M.

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

Green, W. M. J.

Hai, M. S.

M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.

O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.

Horst, F.

Huang, N.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730

Kai, Y.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

Kimura, H.

H. Kimuraet al., A 28 Gb/s 560 mW multi-standard SerDes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS, IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 30913103, 2014.

Kinoshita, S.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

Lai, C. P.

C. P. Lai and K. Bergman, Broadband multicasting for wavelength-striped optical packets, J. Lightw. Technol., vol. 30, no. 11, pp. 17061718, 2012.

Lam, C. F.

C. F. Lam, H. Liu, and R. Urata, What devices do data centers need? in Proc. Opt. Fiber Commun. Conf., 2014, Paper. M2K.5.

Lee, J.

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

Leinse, A.

M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.

Lenovo,

Lenovo, RackSwitch G8264 & G8264T, 2015. [Online]. Available: https://lenovopress.com/tips0815

Liboiron-Ladouceur, O.

M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.

O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, Low-power, transparent optical network interface for high bandwidth off-chip interconnects, Opt. Express, vol. 17, no. 8, pp. 65506561, 2009.

Liu, H.

C. F. Lam, H. Liu, and R. Urata, What devices do data centers need? in Proc. Opt. Fiber Commun. Conf., 2014, Paper. M2K.5.

Maxwell, G.

G. Maxwellet al., Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly, in Proc. 55th Electron. Compon Technol. Conf., 2005, vol. 2, pp. 13491352.

Menolfi, C.

C. Menolfiet al., A 25Gb/s PAM4 transmitter in 90nm CMOS SOI, in Proc. IEEE Int. Solid-State Circuits Conf., 2005, pp. 7273.

Nakagawa, G.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

Offrein, B. J.

Peh, L.-S.

V. Soteriou and L.-S. Peh, Exploring the design space of self-regulating power-aware on/off interconnection networks, IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3, pp. 393408, 2007.

Peng, P.-J.

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

Penty, R. V.

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

Radhakrishnan, S.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730

Raghavan, B.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730

Raponi, P. G.

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

O. Liboiron-Ladouceur, P. G. Raponi, N. Andriolli, I. Cerutti, M. S. Hai, and P. Castoldi, A scalable spacetime multi-plane optical interconnection network using energy-efficient enabling technologies [invited], J. Opt. Commun. Netw., vol. 3, no. 8, pp. A1A11, 2011.

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.

Sahri, N.

N. Sahriet al., A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers, in Proc. Opti. Fiber Commun. Conf., 2001, vol. 4, Paper. PD32.

Shank, S. M.

Sone, K.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

Soteriou, V.

V. Soteriou and L.-S. Peh, Exploring the design space of self-regulating power-aware on/off interconnection networks, IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3, pp. 393408, 2007.

Tanaka, S.

S. Tanakaet al., Monolithically Integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range, IEEE J. Quantum Electron., vol. 45, no. 9, pp. 11551162, 2009.

Tao, L.

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

Toifl, T.

T. Toiflet al., A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology, IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954965, 2006.

Urata, R.

C. F. Lam, H. Liu, and R. Urata, What devices do data centers need? in Proc. Opt. Fiber Commun. Conf., 2014, Paper. M2K.5.

Vahdat, A.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730

Veenstra, T.

M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.

Vlasov, Y. A.

Wang, H.

Weng, C.-C.

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

White, I. H.

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

Williams, K. A.

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

Yoshida, S.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

IEEE J. Quantum Electron. (1)

S. Tanakaet al., Monolithically Integrated 8:1 SOA gate switch with large extinction ratio and wide input power dynamic range, IEEE J. Quantum Electron., vol. 45, no. 9, pp. 11551162, 2009.

IEEE J. Sel. Topics Quantum Electron. (1)

I. Cerutti, P. G. Raponi, N. Andriolli, P. Castoldi, and O. Liboiron-Ladouceur, Designing energyefficient data center networks using spacetime optical interconnection architectures, IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, pp. 37002093700209, 2013.

IEEE J. Solid-State Circuits (3)

J. Lee, P.-C. Chiang, P.-J. Peng, L.-Y. Chen, and C.-C. Weng, Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies, IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 20612073, 2015.

T. Toiflet al., A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology, IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954965, 2006.

H. Kimuraet al., A 28 Gb/s 560 mW multi-standard SerDes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS, IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 30913103, 2014.

IEEE Trans. Parallel Distrib. Syst. (1)

V. Soteriou and L.-S. Peh, Exploring the design space of self-regulating power-aware on/off interconnection networks, IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 3, pp. 393408, 2007.

IET Commun. (1)

P. G. Raponi, N. Andriolli, I. Cerutti, and P. Castoldi, Twostep scheduling framework for space-wavelength modular optical interconnection networks, IET Commun., vol. 4, no. 18, pp. 21552165, 2010.

J. Lightw. Technol. (2)

L. Tao, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, Capacity scaling in a multihost wavelength-striped SOA-based switch fabric, J. Lightw. Technol., vol. 25, no. 3, pp. 655663, 2007.

C. P. Lai and K. Bergman, Broadband multicasting for wavelength-striped optical packets, J. Lightw. Technol., vol. 30, no. 11, pp. 17061718, 2012.

J. Opt. Commun. Netw. (1)

Opt. Express (5)

Photonics (1)

M. S. Hai, A. Leinse, T. Veenstra, and O. Liboiron-Ladouceur, A thermally tunable 1 $\times$ 4 channel wavelength demultiplexer designed on a Low-Loss Si$_{3}$N$_{4}$ waveguide platform, Photonics, vol. 2, no. 4, pp. 10651080, 2015.

Other (9)

C. F. Lam, H. Liu, and R. Urata, What devices do data centers need? in Proc. Opt. Fiber Commun. Conf., 2014, Paper. M2K.5.

G. P. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2002.

N. Sahriet al., A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-terabit optical packet routers, in Proc. Opti. Fiber Commun. Conf., 2001, vol. 4, Paper. PD32.

S. Yoshida, Y. Kai, G. Nakagawa, K. Sone, Y. Aoki, and S. Kinoshita, High-speed SOA gate switch driver with equal-length wiring and peaking techniques, in Proc. Joint Conf. Opto-Electron. Commun. Conf. Australian Conf. Opt. Fibre Technol., 2008, pp. 12.

D. Daiet al., Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers, in Proc. 7th IEEE Int. Conf. Group IV Photon., 2010, pp. 260262.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, Hedera: Dynamic flow scheduling for data center networks, in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation Symp, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855730

C. Menolfiet al., A 25Gb/s PAM4 transmitter in 90nm CMOS SOI, in Proc. IEEE Int. Solid-State Circuits Conf., 2005, pp. 7273.

Lenovo, RackSwitch G8264 & G8264T, 2015. [Online]. Available: https://lenovopress.com/tips0815

G. Maxwellet al., Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly, in Proc. 55th Electron. Compon Technol. Conf., 2005, vol. 2, pp. 13491352.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.