Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 18,
  • pp. 4394-4405
  • (2016)

Joint-Polarization Phase-Noise Estimation and Symbol Detection for Optical Coherent Receivers

Not Accessible

Your library or personal account may give you access

Abstract

The problem of optimal symbol detection in the presence of laser phase noise is studied, for uncoded polarization-multiplexed fiber-optic transmission. To this end, the maximum a posteriori (MAP) symbol detector is presented. Specifically, it is emphasized that obtaining phase-noise point estimates, and treating them as the true values of the phase noise, is in general suboptimal. Furthermore, a pilot-based algorithm that approximates the MAP symbol detector is developed, using approaches adopted from the wireless literature. The algorithm performs joint-polarization phase-noise estimation and symbol detection, for arbitrary modulation formats. Through Monte Carlo simulations, the algorithm is compared to existing solutions from the optical communications literature. It is demonstrated that joint-polarization processing can significantly improve upon the single-polarization case, with respect to linewidth tolerance. Finally, it is shown that with less than 3% pilot overhead the algorithm can be used with lasers having up to 6 times larger linewidths than the most well-performing blind algorithms can tolerate.

© 2016 IEEE

PDF Article
More Like This
Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver

Jianing Lu, Xiang Li, Songnian Fu, Ming Luo, Meng Xiang, Huibin Zhou, Ming Tang, and Deming Liu
Opt. Express 25(5) 5217-5231 (2017)

Carrier phase estimation for optically coherent QPSK based on Wiener-optimal and adaptive Multi-Symbol Delay Detection (MSDD)

Netta Sigron, Igor Tselniker, and Moshe Nazarathy
Opt. Express 20(3) 1981-2003 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.