Abstract

Optimization of channel powers to maximize minimum margin or total capacity in WDM systems is studied. Using a Gaussian noise nonlinearity model, the signal-to-noise ratio (SNR) in each channel is expressed as a convex function of the channel powers. Using the SNR expression, convex optimization problems with objectives of maximizing the minimum channel margin or maximizing the fiber capacity minus a coding cap are formulated. Performance gains from software-based power optimization are observed in mesh networks and in point-to-point links having heterogeneous SNR requirements. By contrast, in systems with uniform amplifier noise and modulation formats, the optimized power allocation provides very little improvement over a traditional flat power allocation. In the 14-node NSFNET network, a margin gain of 1.5 dB on average is achieved through power optimization, as compared to a flat power allocation. Margin gains averaging 1.4 dB are found for subsets of this network with three to 13 nodes.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription