Abstract

Sensors based on long-period fiber gratings (LPFGs) over coated with metal oxide were fabricated and characterized for refractive index (RI) sensing. Oxidation of Ni, Ti, Al, and Cr was monitored in real time by following the features of the LPFG attenuation band. The metals were deposited simultaneously on top of Si substrates for further chemical and morphological analysis. Wavelength sensitivities (nm/RIU) of about 10 437 at 1.432, 1150 at 1.400, 20 125 at 1.448, and 875 at 1.420 were achieved for LPFGs coated, with 68 nm of Ni, 60 nm of TiO2, 50 nm of Al2O3, and 62 nm of Cr2O3, respectively. For surrounding RI higher than the cladding RI, the wavelength sensitivities are 1937, 6801, 5762, and 3051 nm/RIU at 1.457 for the Ni, Ti, Al, and Cr oxides, respectively. Working as intensity sensing devices sensitivities up to 167 dB/RIU were measured. Metal oxide coated LPFGs leads to wavelength sensitivity enhancement comparing to bare LPFGs and may be used in systems with RI higher than the fiber cladding, a region where bare LPFGs are insensitive.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription