Abstract

A moderately coupled multicore fiber (MCF) design is proposed with the aim of realizing both low intercore multiple-input multiple-output (MIMO) processing complexity and high-space utilization efficiency. We numerically and experimentally investigated the influence of mode coupling on the intercore differential mode delay (DMD) in homogeneous core MCF, and show a moderately coupled MCF design to avoid increasing the intercore DMD, which enables us to compensate for the intercore crosstalk by MIMO processing with low computational complexity. Finally, we fabricated 125-μm-cladding two LP-mode six-core fiber and experimentally realized the highest normalized channel multiplicity of 18 without a noticeable DMD increase induced by mode coupling.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription