Abstract

New oxide-confined 980-nm vertical-cavity surface-emitting lasers (VCSELs) with record temperature-stable small-signal bandwidths of 25.6 to 23.0 GHz at 25 to 85 °C are designed, fabricated, and characterized. Technology-based device parameters essential for system-level models of VCSEL-based short-reach and ultrashort-reach optical interconnects are extracted. These parameters include key intrinsic figures-of-merit, including the −3-dB modulation bandwidth, the bandwidth-to-electrical power ratio, and device input impedance, all as functions of temperature, oxide-aperture diameter, and desired range of bias current or current density. Further, the M-factor, relating the intrinsic VCSEL bandwidth to the error-free bit rate for a given external systems configuration and application, is introduced. Our present 980-nm VCSEL technology is capable of 40 Gb/s operation at 85 °C at a simultaneously low current density of 10 kA/cm2 with an energy of only 100 fJ per bit.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription