Abstract

We present a terahertz time-domain spectroscopy-based setup based on photoconductive antennas and a femtosecond fiber laser for measuring the transmission S parameters of electronic devices. To this end, radiation is focused into horn antennas attached to the waveguide-coupled devices under test and coupled out of the device using a similar setup. The terahertz emitter is fiber-coupled in order to allow for flexible selection the measurement geometry. As test cases, the S $_{21}$ parameters of several H band ( ${220}\hbox{-}{330\;{\rm G}\rm {Hz}}$ ) amplifiers are measured and show promising results. Also, the response of a W band amplifier is measured, marking the lower frequency boundary for this setup. In both cases, the measurements are compared to measurements retrieved using a commercially available vector network analyzer with frequency extenders, showing rather good agreement. Transmission measurements of “thru” waveguides used as a reference imply our system's ability to measure up to at least 2.5 THz, widely exceeding the bandwidth of currently available network analyzers.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription