Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 17,
  • pp. 3660-3671
  • (2015)

Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions

Not Accessible

Your library or personal account may give you access

Abstract

The paper develops a statistical model for the signals received in phase-sensitive optical time domain reflectometry (OTDR) probed by highly coherent sources. The backscattering process is modelled by a set of discrete scatterers with properly chosen parameters. Explicit equations for calculating the amplitude and the phase of the backscattered signal are obtained. The developed model predicts spectral and autocorrelation characteristics of the amplitude signals that are validated by experimental results. Characteristics of the phase signals, practicable for studying the sensing applications of the OTDR system, are presented and studied as well, demonstrating good correspondence with experiment. A more detailed modelling of distributed vibration sensing systems and their response to disturbances along an optical fiber will be possible as an extension of the developed formalism.

© 2015 IEEE

PDF Article
More Like This
Interferometric optical time-domain reflectometry for distributed optical-fiber sensing

Sergey V. Shatalin, Vladimir N. Treschikov, and Alan J. Rogers
Appl. Opt. 37(24) 5600-5604 (1998)

Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry

Xin Lu, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 25(14) 16059-16071 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.