Abstract

We report on a distributed circuit model for multi-color light-actuated optoelectrowetting devices. The model takes into consideration the large variation of absorption coefficient (15×) of photoconductors in the visible spectrum and the nonuniform distribution of photogenerated carriers. With the help of this model, we designed opto-electrowetting devices with optimum thickness of photoconductors. This leads to significant improvement in performance compared with prior reports, including 200× lower optical power, 5× lower voltage, and 20× faster droplet moving speed. This enables the use of commercial projectors to create on-demand “virtual” electrodes for large-scale parallel manipulation of droplets. We have achieved simultaneous manipulation of 96-droplet array. Finally, we have demonstrated parallel on chip detection of Herpes Simplex Virus Type 1 within 45 min using a real-time isothermal polymerase chain reaction assay.

© 2015 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Adamson, D. Mustafi, J. X. Zhang, “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip, vol. 6, pp. 1178–1186, 2006.
  2. J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.
  3. L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.
  4. M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., vol. 77, pp. 1725–1726, 2000.
  5. S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, pp. 70–80, 2003.
  6. S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.
  7. M. Abdelgawad and A. R. Wheeler, “The digital revolution: A new paradigm for microfluidics,” Adv. Mater., vol. 21, pp. 920–925, 2009.
  8. V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.
  9. Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.
  10. Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.
  11. A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.
  12. I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, “A microfluidic platform for complete mammalian cell culture,” Lab Chip, vol. 10, pp. 1536–1542, 2010.
  13. J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.
  14. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.
  15. P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” J. Microelectromech. Syst., vol. 17, pp. 133–138, 2008.
  16. P. Y. Chiou, S.-Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Appl. Phys. Lett., vol. 93, pp. 221110–221113, 2008.
  17. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.
  18. A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.
  19. S.-Y. Park, M. A. Teitell, and P.-Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab. Chip., vol. 10, pp. 1655–1661, 2010.
  20. W.-Y. Lin, Y.-H. Lin, and G.-B. Lee, “Separation of micro-particles utilizing spatial diffference of optically induced dielectrophoretic forces,” Microfluidics Nanofluidics, vol. 8, pp. 217–229, 2000.
  21. W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.
  22. J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.
  23. F. Mugele and J. Baret, “Electrowetting: From basics to applications,” J. Phys., Condens. Matter, vol. 17, pp. 705–774, 2005.
  24. T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.
  25. H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.
  26. Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.
  27. J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.
  28. Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.
  29. Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.
  30. V. Bahadur and S. V. Garimella, “An energy-based model for electrowetting-induced droplet actuation,” J. Micromech. Microeng., vol. 16, no. 8, p. 1494, 2006.
  31. M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.
  32. Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.
  33. V. N. Luk, G. C. H. Mo, and A. R. Wheeler. “Pluronic additives: A solution to sticky problems in digital microfluidics,” Langmuir, vol. 24, no. 12, pp. 6382–6389, 2008.

2013 (1)

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

2012 (2)

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.

2011 (1)

M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.

2010 (5)

J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, “A microfluidic platform for complete mammalian cell culture,” Lab Chip, vol. 10, pp. 1536–1542, 2010.

S.-Y. Park, M. A. Teitell, and P.-Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab. Chip., vol. 10, pp. 1655–1661, 2010.

2009 (1)

M. Abdelgawad and A. R. Wheeler, “The digital revolution: A new paradigm for microfluidics,” Adv. Mater., vol. 21, pp. 920–925, 2009.

2008 (7)

S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” J. Microelectromech. Syst., vol. 17, pp. 133–138, 2008.

P. Y. Chiou, S.-Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Appl. Phys. Lett., vol. 93, pp. 221110–221113, 2008.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

V. N. Luk, G. C. H. Mo, and A. R. Wheeler. “Pluronic additives: A solution to sticky problems in digital microfluidics,” Langmuir, vol. 24, no. 12, pp. 6382–6389, 2008.

2007 (1)

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

2006 (3)

V. Bahadur and S. V. Garimella, “An energy-based model for electrowetting-induced droplet actuation,” J. Micromech. Microeng., vol. 16, no. 8, p. 1494, 2006.

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

D. N. Adamson, D. Mustafi, J. X. Zhang, “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip, vol. 6, pp. 1178–1186, 2006.

2005 (4)

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.

F. Mugele and J. Baret, “Electrowetting: From basics to applications,” J. Phys., Condens. Matter, vol. 17, pp. 705–774, 2005.

2004 (1)

V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.

2003 (3)

S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, pp. 70–80, 2003.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.

2002 (1)

H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.

2000 (2)

W.-Y. Lin, Y.-H. Lin, and G.-B. Lee, “Separation of micro-particles utilizing spatial diffference of optically induced dielectrophoretic forces,” Microfluidics Nanofluidics, vol. 8, pp. 217–229, 2000.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., vol. 77, pp. 1725–1726, 2000.

1991 (1)

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Abdelgawad, M.

M. Abdelgawad and A. R. Wheeler, “The digital revolution: A new paradigm for microfluidics,” Adv. Mater., vol. 21, pp. 920–925, 2009.

Adamson, D. N.

D. N. Adamson, D. Mustafi, J. X. Zhang, “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip, vol. 6, pp. 1178–1186, 2006.

Au, S. H.

I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, “A microfluidic platform for complete mammalian cell culture,” Lab Chip, vol. 10, pp. 1536–1542, 2010.

Bahadur, V.

V. Bahadur and S. V. Garimella, “An energy-based model for electrowetting-induced droplet actuation,” J. Micromech. Microeng., vol. 16, no. 8, p. 1494, 2006.

Barbulovic-Nad, I.

I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, “A microfluidic platform for complete mammalian cell culture,” Lab Chip, vol. 10, pp. 1536–1542, 2010.

Baret, J.

F. Mugele and J. Baret, “Electrowetting: From basics to applications,” J. Phys., Condens. Matter, vol. 17, pp. 705–774, 2005.

Baret, J.-C.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Benton, J. L.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

Bhardwaj, U.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

Bhatt, K. H.

J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.

Bird, C. A.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

Blouwolff, J.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Chang, J.-H.

J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.

Chang, Y.

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

Chang, Y. S.

T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.

Chang, Z.

P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” J. Microelectromech. Syst., vol. 17, pp. 133–138, 2008.

Chen, Y.

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

Chiou, P. Y.

P. Y. Chiou, S.-Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Appl. Phys. Lett., vol. 93, pp. 221110–221113, 2008.

P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” J. Microelectromech. Syst., vol. 17, pp. 133–138, 2008.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

Chiou, P.-Y.

S.-Y. Park, M. A. Teitell, and P.-Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab. Chip., vol. 10, pp. 1655–1661, 2010.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

Cho, S. K.

S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, pp. 70–80, 2003.

H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.

Choi, D.

J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.

Clausell-Tormos, J.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Collin, A. J.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Dong, Z.

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Duan, H.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Eckhardt, A. E.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

El-Harrak, A.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Evans, R. D.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Fair, R. B.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., vol. 77, pp. 1725–1726, 2000.

Fowler, J. D.

T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.

Frenz, L.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Garimella, S. V.

V. Bahadur and S. V. Garimella, “An energy-based model for electrowetting-induced droplet actuation,” J. Micromech. Microeng., vol. 16, no. 8, p. 1494, 2006.

Garrell, R. L.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.

Gilbert, J.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

Griffiths, A. D.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Han, S.

J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.

Han, T. H.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

Haworth, L. I.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Henderson, R.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Heyman, J. A

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

Hishikawa, Y.

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Holtze, C.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Hsu, B.-N.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Hsu, H.- Y.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

Hua, Z.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

Huang, F.

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

Humphry, K. J.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Hung, L.

S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.

Hutcheon, N. G.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Jamshidi, A.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

Jones, T. B.

T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.

Kim, C. J.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.

H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.

Kim, C.-J.

S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, pp. 70–80, 2003.

Kong, H.

Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.

M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.

Köster, S.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Lee, A. P.

S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.

Lee, G.-B.

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

W.-Y. Lin, Y.-H. Lin, and G.-B. Lee, “Separation of micro-particles utilizing spatial diffference of optically induced dielectrophoretic forces,” Microfluidics Nanofluidics, vol. 8, pp. 217–229, 2000.

Lemieux, B.

Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.

Li, P.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Li, W. J.

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Li, Y.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Liang, W.

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Liao, J. C.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

Lieber, D.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Lin, J.

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

Lin, R.

S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.

Lin, W.-Y.

W.-Y. Lin, Y.-H. Lin, and G.-B. Lee, “Separation of micro-particles utilizing spatial diffference of optically induced dielectrophoretic forces,” Microfluidics Nanofluidics, vol. 8, pp. 217–229, 2000.

Lin, Y.-H.

W.-Y. Lin, Y.-H. Lin, and G.-B. Lee, “Separation of micro-particles utilizing spatial diffference of optically induced dielectrophoretic forces,” Microfluidics Nanofluidics, vol. 8, pp. 217–229, 2000.

Lin, Y.-Y.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Loo, J. A.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

Loo, R. R.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

Luk, V. N.

V. N. Luk, G. C. H. Mo, and A. R. Wheeler. “Pluronic additives: A solution to sticky problems in digital microfluidics,” Langmuir, vol. 24, no. 12, pp. 6382–6389, 2008.

Madison, A. C.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Mazutis, L.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

McCabe, E. R. B.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

McCarthy, K.

Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.

Merten, C. A.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Miller, O. J.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Millman, J. R.

J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.

Mitchell, T. G.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

Mo, G. C. H.

V. N. Luk, G. C. H. Mo, and A. R. Wheeler. “Pluronic additives: A solution to sticky problems in digital microfluidics,” Langmuir, vol. 24, no. 12, pp. 6382–6389, 2008.

Moon, H.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, pp. 70–80, 2003.

H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.

Mugele, F.

F. Mugele and J. Baret, “Electrowetting: From basics to applications,” J. Phys., Condens. Matter, vol. 17, pp. 705–774, 2005.

Muir, K. R.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Mustafi, D.

D. N. Adamson, D. Mustafi, J. X. Zhang, “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip, vol. 6, pp. 1178–1186, 2006.

Nakamura, N.

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Nakano, S.

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Ohta, A. T.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.

Pak, J.

J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.

Pamula, V. K.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.

Park, S.-Y.

S.-Y. Park, M. A. Teitell, and P.-Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab. Chip., vol. 10, pp. 1655–1661, 2010.

P. Y. Chiou, S.-Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Appl. Phys. Lett., vol. 93, pp. 221110–221113, 2008.

Parkes, W.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Pollack, M. G.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., vol. 77, pp. 1725–1726, 2000.

Poulter, M. D.

M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.

Prevo, B. G.

J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.

Rae, B.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Rouse, J. L.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

Schell, W. A.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

Shenderov, A. D.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., vol. 77, pp. 1725–1726, 2000.

Srinivasan, V.

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.

Stokes, A. A.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Sun, R.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

Tang, Y.-W.

M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.

Teh, S.

S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.

Teitell, M. A.

S.-Y. Park, M. A. Teitell, and P.-Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab. Chip., vol. 10, pp. 1655–1661, 2010.

Tong, Y.

Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.

Toshiyoshi, H.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

Tsuda, S.

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Tsuge, S.

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Ung, W. L.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

Valley, J. K.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

Velev, O. D.

J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.

Walton, A. J.

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Wang, S.

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Weitz, D. A.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

Welch, E.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Wheeler, A. R.

I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, “A microfluidic platform for complete mammalian cell culture,” Lab Chip, vol. 10, pp. 1536–1542, 2010.

M. Abdelgawad and A. R. Wheeler, “The digital revolution: A new paradigm for microfluidics,” Adv. Mater., vol. 21, pp. 920–925, 2009.

V. N. Luk, G. C. H. Mo, and A. R. Wheeler. “Pluronic additives: A solution to sticky problems in digital microfluidics,” Langmuir, vol. 24, no. 12, pp. 6382–6389, 2008.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

Wu, M. C.

P. Y. Chiou, S.-Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Appl. Phys. Lett., vol. 93, pp. 221110–221113, 2008.

P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” J. Microelectromech. Syst., vol. 17, pp. 133–138, 2008.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

Yen-Lieberman, B.

M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.

Yu, F.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

Yukinori, Y.

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Zhang, J. X.

D. N. Adamson, D. Mustafi, J. X. Zhang, “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip, vol. 6, pp. 1178–1186, 2006.

Adv. Mater. (1)

M. Abdelgawad and A. R. Wheeler, “The digital revolution: A new paradigm for microfluidics,” Adv. Mater., vol. 21, pp. 920–925, 2009.

Anal. Chem. (2)

Z. Hua, J. L. Rouse, A. E. Eckhardt, V. Srinivasan, V. K. Pamula, W. A. Schell, J. L. Benton, T. G. Mitchell, and M. G. Pollack, “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Anal. Chem., vol. 82, no. 6, pp. 2310–2316, 2010.

A. R. Wheeler, H. Moon, C. A. Bird, R. R. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Anal. Chem., vol. 77, pp. 534–540, 2005.

Analytica Chimica Acta (1)

V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.

Appl. Phys. Lett. (2)

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., vol. 77, pp. 1725–1726, 2000.

P. Y. Chiou, S.-Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Appl. Phys. Lett., vol. 93, pp. 221110–221113, 2008.

Biomed. Microdevices (1)

Y. Chang, G.-B. Lee, F. Huang, Y. Chen, and J. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomed. Microdevices, vol. 8, pp. 215–225, 2006.

Chem. Biol. (1)

J. Clausell-Tormos, D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffiths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., vol. 15, no. 5, pp. 427–437, 2008.

J. Appl. Phys. (1)

H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, pp. 4080–4087, 2002.

J. Clin. Virol. (1)

M. D. Poulter, H. Kong, Y.-W. Tang, and B. Yen-Lieberman, “A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2,” J. Clin. Virol., vol. 50, pp. 26–30, 2011.

J. Microelectromech. Syst. (4)

J. K. Valley, A. Jamshidi, A. T. Ohta, H.- Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst., vol. 17, pp. 342–350, 2008.

A. T. Ohta, P.-Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” J. Microelectromech. Syst., vol. 16, no. 3, pp. 491–499, 2007.

S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, pp. 70–80, 2003.

P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” J. Microelectromech. Syst., vol. 17, pp. 133–138, 2008.

J. Micromech. Microeng. (1)

V. Bahadur and S. V. Garimella, “An energy-based model for electrowetting-induced droplet actuation,” J. Micromech. Microeng., vol. 16, no. 8, p. 1494, 2006.

J. Mol. Diagn. (1)

Y. Tong, K. McCarthy, H. Kong, and B. Lemieux, “Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector,” J. Mol. Diagn., vol. 14, no. 6, pp. 569–576, 2012.

J. Phys., Condens. Matter (1)

F. Mugele and J. Baret, “Electrowetting: From basics to applications,” J. Phys., Condens. Matter, vol. 17, pp. 705–774, 2005.

Jpn. J. Appl. Phys. (1)

Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, and Y. Yukinori, “Device-quality wide-gap hydrogenated amorphous silicon films deposited by plasma chemical vapor deposition at low substrate temperatures,” Jpn. J. Appl. Phys., vol. 69, pp. 508–510, 1991.

Lab Chip (3)

D. N. Adamson, D. Mustafi, J. X. Zhang, “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices,” Lab Chip, vol. 6, pp. 1178–1186, 2006.

I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, “A microfluidic platform for complete mammalian cell culture,” Lab Chip, vol. 10, pp. 1536–1542, 2010.

S. Teh, R. Lin, L. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, pp. 198–220, 2008.

Lab. Chip. (1)

S.-Y. Park, M. A. Teitell, and P.-Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab. Chip., vol. 10, pp. 1655–1661, 2010.

Langmuir (2)

T. B. Jones, J. D. Fowler, Y. S. Chang, and C. J. Kim, “Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,” Langmuir, vol. 19, pp. 7646–7651, 2003.

V. N. Luk, G. C. H. Mo, and A. R. Wheeler. “Pluronic additives: A solution to sticky problems in digital microfluidics,” Langmuir, vol. 24, no. 12, pp. 6382–6389, 2008.

Microfluidics Nanofluidics (2)

J.-H. Chang, D. Choi, S. Han, and J. Pak, “Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric,” Microfluidics Nanofluidics, vol. 8, pp. 269–273, 2010.

W.-Y. Lin, Y.-H. Lin, and G.-B. Lee, “Separation of micro-particles utilizing spatial diffference of optically induced dielectrophoretic forces,” Microfluidics Nanofluidics, vol. 8, pp. 217–229, 2000.

Micromach. (1)

W. Liang, S. Wang, Z. Dong, G.-B. Lee, and W. J. Li, “Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic micro-manipulation,” Micromach., vol. 3, pp. 492–508, 2012.

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, 2005.

Nature Mater. (1)

J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Mater., vol. 4, pp. 98–102, 2005.

Nature Protocols (1)

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nature Protocols, vol. 8, pp. 870–891, 2013.

Sens. Actuators A, Phys. (1)

P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sens. Actuators A, Phys., vol. 104, no. 3, pp. 222–228, 2003.

Sens. Actuators B (1)

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators B, vol. 150, no. 1, pp. 465–470, 2010.

Solid-State Electron. (1)

Y. Li, W. Parkes, L. I. Haworth, A. A. Stokes, K. R. Muir, P. Li, A. J. Collin, N. G. Hutcheon, R. Henderson, B. Rae, and A. J. Walton, “Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication,” Solid-State Electron., vol. 52, no. 9, pp. 1382–1387, 2008.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.