Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 16,
  • pp. 3385-3393
  • (2015)

Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals

Not Accessible

Your library or personal account may give you access

Abstract

We describe the design and fabrication of biochips based on 1-D photonic crystals supporting Bloch surface waves for label-free optical biosensing. The optical properties of Bloch surface waves are studied in relation to the geometry of the photonic crystals and on the properties of the dielectric materials used for the fabrication. The planar stacks of the biochips are composed of silica, tantala, and titania that were deposited using plasma-ion-assisted evaporation under high-vacuum conditions. The biochip surfaces were functionalized by silanization, and appropriate fluidic cells were designed to operate in an automated platform. An angularly resolved ellipsometric optical sensing apparatus was assembled to carry out the sensing studies. The angular operation is obtained by a focused laser beam at a fixed wavelength and detection of the angular reflectance spectrum by means of an array detector. The results of the experimental characterization of the physical properties of the fabricated biochips show that their characteristics, in terms of sensitivity and figure of merit, match those expected from the numerical simulations. Practical application of the sensor was demonstrated by detecting a specific glycoprotein, Angio-poietin 2, that is involved in angiogenesis and inflammation processes. The protocol used for the label-free detection of Angiopoietin 2 is described, and the results of an exemplary assay, carried out at a relatively high concentration of 1 μg/ml, are given and confirm that an efficient detection can be achieved. The limit of detection of the biochips for Angiopoietin 2, based on the protocol used, is 1.5 pg/mm2 in buffer solution. The efficiency of the label-free assay is confirmed by independent measurements carried out by means of confocal fluorescence microscopy.

© 2015 IEEE

PDF Article
More Like This
Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma

Riccardo Rizzo, Maria Alvaro, Norbert Danz, Lucia Napione, Emiliano Descrovi, Stefan Schmieder, Alberto Sinibaldi, Subinoy Rana, Rona Chandrawati, Peter Munzert, Thomas Schubert, Emmanuel Maillart, Aleksei Anopchenko, Paola Rivolo, Alessandro Mascioletti, Erik Förster, Frank Sonntag, Molly M. Stevens, Federico Bussolino, and Francesco Michelotti
Biomed. Opt. Express 9(2) 529-542 (2018)

Design rules for combined label-free and fluorescence Bloch surface wave biosensors

Francesco Michelotti, Riccardo Rizzo, Alberto Sinibaldi, Peter Munzert, Christoph Wächter, and Norbert Danz
Opt. Lett. 42(14) 2798-2801 (2017)

Bloch surface wave-atom coupling in one-dimensional photonic crystal structure

M. Asadolah Salmanpour, M. Mosleh, and S. M. Hamidi
Opt. Express 31(3) 4751-4759 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.