Abstract

We experimentally demonstrate a cost-effective coherent 10 Gb/s system for passive optical networks, exploiting off-the-shelf DFB lasers and a phase-diversity receiver based on a simple 3 × 3 fiber coupler. Since the system uses a simple amplitude-shift keying format, no complex electronic processing is required and there is no need of frequency/phase stabilization of the local oscillator, whose frequency can change by more than ±1 GHz with no significant performance variation. The system has a 40 dB loss budget and is, therefore, compatible with the high losses of practical optical distribution networks, where power splitting is used to distribute the signal to a high number of users. Error-free 10-Gb/s transmission at the FEC limit is obtained after transmission over up to 66 km of G.652 single mode fiber. Polarization-independent operation is also demonstrated with a simple modification of the detection scheme, without duplicating components, and with a small variation of the sensitivity. The limited complexity indicates the potential for a cost-effective implementation, which makes it compatible with the strictly cost-aware access networks environment, even for high-end services.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription