Abstract

The main challenges facing high data rate visible light communication (VLC) are the low-modulation bandwidth of the current transmitters (i.e., light emitting diodes), the intersymbol interference (ISI) caused by the multipath propagation and cochannel interference (CCI) due to multiple transmitters. In this paper, for the first time, to the best of our knowledge, we propose, design, and evaluate the use of laser diodes (LDs) for communication as well as illumination. In addition, we propose an imaging receiver for a mobile VLC system to mitigate ISI. A novel delay adaptation technique is proposed to mitigate CCI, maximize the signal to noise ratio, and reduce the impact of multipath dispersion under user mobility. The proposed imaging system is able to provide data rates of 5 Gb/s in the worst-case scenario. The combination of a delay adaptation approach with an imaging receiver (DAT imaging LD-VLC system) adds a degree of freedom to the link design, which results in a VLC system that has the ability to provide higher data rates (i.e., 10 Gb/s) in the considered harsh indoor environment. The proposed technique (delay adaptation) achieves significant improvements in the VLC channel bandwidth (more than 16 GHz) over an imaging system in the worst-case scenario. The VLC channel characteristics and links were evaluated under diverse situations including an empty room and a room with very strong shadowing effects resulting from minicubicle offices.

© 2015 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nature Photon., vol. 1, no. 5, pp. 245–247, 2007.
  2. A. T. Hussein and J. M. H. Elmirghani, “A survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, submitted for publication.
  3. H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.
  4. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 
  5. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.
  6. Z. Xie, K. Cui, H. Zhang, and Z. Xu, “Capacity of MIMO visible light communication channels,” in Proc. Photon. Soc. Summer Top. Meet. Ser., 2012, pp. 159–160.
  7. P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.
  8. H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.
  9. L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.
  10. K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.
  11. C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.
  12. S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.
  13. N. Fujimoto and H. Mochizuki, “477Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” in Proc Opt. Fibre Commun. Conf. Expo. Nat. Fibre Opt. Eng. Conf., 2013, pp. 1–3.
  14. D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.
  15. (2015, Jan. 1). Laser light leading the way to the future. [Online]. Available: http://46.4.5.252/en_au/bmw-i8/laser-light-leading-the-way-to-the-future/94/laser-light-leading-the-way-to-the-future
  16. A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.
  17. R. Gatdula, J. Murray, A. Heizler, and M. Shah. (2015, Jan. 1). Solid state lighting with blue laser diodes. [Online]. Available: http://www.winlab.rutgers.edu/∼crose/capstone12/entries/SolidStateLightingwBlueLaser-Diodes-Revised.pdf
  18. C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diode,” Adv. Opt. Technol., vol. 2, no. 4, pp. 313–321, 2013.
  19. (2015, Jan. 1). LD lighting engine is a new type of light source from Toshiba. [Online]. Available: http://reefbuilders.com/2012/07/23/ld-lighting-engine-toshiba/
  20. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.
  21. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., 2001, vol. 2, pp. 81–85.
  22. N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proc. Int. Conf. ICT Convergence, 2012, pp. 159–162.
  23. K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.
  24. Z. Wang, C. Yu, W. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express, vol. 20, no. 4, pp. 4564–4573, 2012.
  25. Lighting of Indoor Work Places. (2015, Jan. 1). European Standard EN 12464-1. [Online]. Available: http://www.etaplighting.com/uploadedFiles/Downloadable_documentation/documentatie/EN12464_E_OK.pdf
  26. W. R. McCluney, Introduction to Radiometry and Photometry. Norwood, MA, USA: Artech House, 1994.
  27. A. Ryer and V. Light. (2015, Jan. 1). Light Measurement Handbook. [Online]. Available: http://irtel.uni-mannheim.de/lehre/seminar-psychophysik/artikel/alex_ryer_light_measurement_handbook.pdf
  28. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.
  29. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.
  30. T. Komine, “Visible light wireless communication and its fundamental,” Ph.D. dissertation, Dept. Informat. Comput. Sci., Keio Univ., Tokyo, Japan, 2005.
  31. F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.
  32. F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.
  33. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.
  34. S. Soltic and A. Chalmers, “Optimization of laser-based white light illuminants,” Opt. Express, vol. 21, no. 7, pp. 8964–8971, 2013.
  35. A. Stimson, Photometry and Radiometry for Engineers. New York, NY, USA: Wiley-Interscience, 1974.
  36. M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.
  37. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.
  38. P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.
  39. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.
  40. F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.
  41. J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.
  42. F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 3, no. 1, pp. 27–39, 2011.
  43. S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,’’ Bell Syst. Technol. J., vol. 52, no. 6, pp. 843–886, 1973.
  44. M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with ‘imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.
  45. J. M. H. Elmirghani, H. Chan, and R. Cryan, “Sensitivity evaluation of optical wireless PPM systems utilising PIN-BJT receivers,” IEE Proc.-Optoelectron., vol. 143, no. 6, pp. 355–359, 1996.
  46. B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, 1989.
  47. E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.
  48. M. Tolstrup, Indoor Radio Planning: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE. New York, NY, USA: Wiley, 2011.
  49. P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory., vol. 48, no. 6, pp. 1277–1294, 2002.
  50. IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, pp. 1–309.
  51. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” IEE Proc. Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

2015 (1)

A. T. Hussein and J. M. H. Elmirghani, “A survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, submitted for publication.

2013 (6)

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diode,” Adv. Opt. Technol., vol. 2, no. 4, pp. 313–321, 2013.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

S. Soltic and A. Chalmers, “Optimization of laser-based white light illuminants,” Opt. Express, vol. 21, no. 7, pp. 8964–8971, 2013.

2012 (4)

Z. Wang, C. Yu, W. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express, vol. 20, no. 4, pp. 4564–4573, 2012.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with ‘imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

2011 (2)

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 3, no. 1, pp. 27–39, 2011.

2010 (1)

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

2008 (1)

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

2007 (1)

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nature Photon., vol. 1, no. 5, pp. 245–247, 2007.

2005 (1)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” IEE Proc. Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

2004 (3)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

2003 (1)

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

2002 (1)

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory., vol. 48, no. 6, pp. 1277–1294, 2002.

2000 (1)

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

1998 (1)

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

1996 (1)

J. M. H. Elmirghani, H. Chan, and R. Cryan, “Sensitivity evaluation of optical wireless PPM systems utilising PIN-BJT receivers,” IEE Proc.-Optoelectron., vol. 143, no. 6, pp. 355–359, 1996.

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

1992 (1)

E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.

1989 (1)

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, 1989.

1979 (1)

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

1973 (1)

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,’’ Bell Syst. Technol. J., vol. 52, no. 6, pp. 843–886, 1973.

Al-Ghamdi, A. G.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” IEE Proc. Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

Alhartomi, M. A.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

Alresheedi, M. T.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with ‘imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

Alsaadi, F. E.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 3, no. 1, pp. 27–39, 2011.

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

Bapst, U. H.

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

Basu, C.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diode,” Adv. Opt. Technol., vol. 2, no. 4, pp. 313–321, 2013.

Bentley, E.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

Biagi, M.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

Borogovac, T.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

Brien, D. C. O

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

Brueck, S.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

Cantore, M.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Chalmers, A.

Chan, H.

J. M. H. Elmirghani, H. Chan, and R. Cryan, “Sensitivity evaluation of optical wireless PPM systems utilising PIN-BJT receivers,” IEE Proc.-Optoelectron., vol. 143, no. 6, pp. 355–359, 1996.

Chao, L.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

Chen, J.

Chen, W.

Choudhury, P.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

Cogman, A.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

Cryan, R.

J. M. H. Elmirghani, H. Chan, and R. Cryan, “Sensitivity evaluation of optical wireless PPM systems utilising PIN-BJT receivers,” IEE Proc.-Optoelectron., vol. 143, no. 6, pp. 355–359, 1996.

Cui, K.

Z. Xie, K. Cui, H. Zhang, and Z. Xu, “Capacity of MIMO visible light communication channels,” in Proc. Photon. Soc. Summer Top. Meet. Ser., 2012, pp. 159–160.

Davis, W.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

Dawson, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Dawson, M. D.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

DenBaars, S. P.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Djahani, P.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

Elmirghani, J. M. H.

A. T. Hussein and J. M. H. Elmirghani, “A survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, submitted for publication.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with ‘imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 3, no. 1, pp. 27–39, 2011.

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” IEE Proc. Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

J. M. H. Elmirghani, H. Chan, and R. Cryan, “Sensitivity evaluation of optical wireless PPM systems utilising PIN-BJT receivers,” IEE Proc.-Optoelectron., vol. 143, no. 6, pp. 355–359, 1996.

Faulkner, G.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Fernandez, L.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Fujimoto, N.

N. Fujimoto and H. Mochizuki, “477Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” in Proc Opt. Fibre Commun. Conf. Expo. Nat. Fibre Opt. Eng. Conf., 2013, pp. 1–3.

Gatdula, R.

R. Gatdula, J. Murray, A. Heizler, and M. Shah. (2015, Jan. 1). Solid state lighting with blue laser diodes. [Online]. Available: http://www.winlab.rutgers.edu/∼crose/capstone12/entries/SolidStateLightingwBlueLaser-Diodes-Revised.pdf

Gfeller, F. R.

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Ghassemlooy, Z.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Habel, K.

C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Hadjifotiou, A.

E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.

Haigh, P. A.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Hardcastle, I.

E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.

Haruyama, S.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., 2001, vol. 2, pp. 81–85.

Heizler, A.

R. Gatdula, J. Murray, A. Heizler, and M. Shah. (2015, Jan. 1). Solid state lighting with blue laser diodes. [Online]. Available: http://www.winlab.rutgers.edu/∼crose/capstone12/entries/SolidStateLightingwBlueLaser-Diodes-Revised.pdf

Henderson, R. K.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

Hilt, J.

C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.

Hussein, A. T.

A. T. Hussein and J. M. H. Elmirghani, “A survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, submitted for publication.

Jang, Y. M.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proc. Int. Conf. ICT Convergence, 2012, pp. 159–162.

Jung, D.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

Kahn, J. M.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

Kelly, A.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Kelly, A. E.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

Kimber, E. M.

E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

T. Komine, “Visible light wireless communication and its fundamental,” Ph.D. dissertation, Dept. Informat. Comput. Sci., Keio Univ., Tokyo, Japan, 2005.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., 2001, vol. 2, pp. 81–85.

Kottke, C.

C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

Langer, K.

C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.

Langer, K. D.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Laroia, R.

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory., vol. 48, no. 6, pp. 1277–1294, 2002.

Le, N. T.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proc. Int. Conf. ICT Convergence, 2012, pp. 159–162.

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

Lee, K.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

Leskovar, B.

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, 1989.

Light, V.

A. Ryer and V. Light. (2015, Jan. 1). Light Measurement Handbook. [Online]. Available: http://irtel.uni-mannheim.de/lehre/seminar-psychophysik/artikel/alex_ryer_light_measurement_handbook.pdf

Little, T. D. C.

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

Markov, V.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Massoubre, D.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

McCluney, W. R.

W. R. McCluney, Introduction to Radiometry and Photometry. Norwood, MA, USA: Artech House, 1994.

McKendry, J.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Meinhardt-Wollweber, M.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diode,” Adv. Opt. Technol., vol. 2, no. 4, pp. 313–321, 2013.

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

Minh, H. L.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

Mochizuki, H.

N. Fujimoto and H. Mochizuki, “477Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” in Proc Opt. Fibre Commun. Conf. Expo. Nat. Fibre Opt. Eng. Conf., 2013, pp. 1–3.

Mondal, R. K.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proc. Int. Conf. ICT Convergence, 2012, pp. 159–162.

Murray, J.

R. Gatdula, J. Murray, A. Heizler, and M. Shah. (2015, Jan. 1). Solid state lighting with blue laser diodes. [Online]. Available: http://www.winlab.rutgers.edu/∼crose/capstone12/entries/SolidStateLightingwBlueLaser-Diodes-Revised.pdf

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., 2001, vol. 2, pp. 81–85.

Nakamura, S.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Neumann, A.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

O’Brien, D.

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nature Photon., vol. 1, no. 5, pp. 245–247, 2007.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

O’Farrell, T.

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

Oh, Y.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

Oh , Y.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

Ohno, Y.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

Paraskevopoulos, A.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Parry, G.

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nature Photon., vol. 1, no. 5, pp. 245–247, 2007.

Patel, B. L.

E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,’’ Bell Syst. Technol. J., vol. 52, no. 6, pp. 843–886, 1973.

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Roth, B.

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diode,” Adv. Opt. Technol., vol. 2, no. 4, pp. 313–321, 2013.

Ryer, A.

A. Ryer and V. Light. (2015, Jan. 1). Light Measurement Handbook. [Online]. Available: http://irtel.uni-mannheim.de/lehre/seminar-psychophysik/artikel/alex_ryer_light_measurement_handbook.pdf

Saha, N.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proc. Int. Conf. ICT Convergence, 2012, pp. 159–162.

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Shah, M.

R. Gatdula, J. Murray, A. Heizler, and M. Shah. (2015, Jan. 1). Solid state lighting with blue laser diodes. [Online]. Available: http://www.winlab.rutgers.edu/∼crose/capstone12/entries/SolidStateLightingwBlueLaser-Diodes-Revised.pdf

Soltic, S.

Son, T. T.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

Stavrinou, P.

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nature Photon., vol. 1, no. 5, pp. 245–247, 2007.

Stimson, A.

A. Stimson, Photometry and Radiometry for Engineers. New York, NY, USA: Wiley-Interscience, 1974.

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., 2001, vol. 2, pp. 81–85.

Tang, A.

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

Teik, B. K.

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

Tolstrup, M.

M. Tolstrup, Indoor Radio Planning: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE. New York, NY, USA: Wiley, 2011.

Tsao, J. Y.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

Tse, D. N. C.

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory., vol. 48, no. 6, pp. 1277–1294, 2002.

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Viswanath, P.

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory., vol. 48, no. 6, pp. 1277–1294, 2002.

Vucic, J.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Vuèiæ, J.

C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.

Wang, Z.

Watson, S.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

Weisbin, A. G.

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

Wendl, M.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

Wierer, J. J.

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

Wong, K. K.

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

Xie, Z.

Z. Xie, K. Cui, H. Zhang, and Z. Xu, “Capacity of MIMO visible light communication channels,” in Proc. Photon. Soc. Summer Top. Meet. Ser., 2012, pp. 159–160.

Xu, Z.

Z. Xie, K. Cui, H. Zhang, and Z. Xu, “Capacity of MIMO visible light communication channels,” in Proc. Photon. Soc. Summer Top. Meet. Ser., 2012, pp. 159–160.

Yu, C.

Zeng, L.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

Zhang, H.

Z. Xie, K. Cui, H. Zhang, and Z. Xu, “Capacity of MIMO visible light communication channels,” in Proc. Photon. Soc. Summer Top. Meet. Ser., 2012, pp. 159–160.

Zhang, S.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

Zhong, W.

Adv. Opt. Technol. (1)

C. Basu, M. Meinhardt-Wollweber, and B. Roth, “Lighting with laser diode,” Adv. Opt. Technol., vol. 2, no. 4, pp. 313–321, 2013.

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv., vol. 3, no. 7, pp. 1–6, 2013.

Bell Syst. Technol. J. (1)

S. D. Personick, “Receiver design for digital fiber optical communication system, Part I and II,’’ Bell Syst. Technol. J., vol. 52, no. 6, pp. 843–886, 1973.

Electron. Lett. (1)

E. M. Kimber, B. L. Patel, I. Hardcastle, and A. Hadjifotiou, “High performance 10 Gbit/s pin-FET optical receiver,” Electron. Lett., vol. 28, no. 2, pp. 120–122, 1992.

IEE Proc. Optoelectron. (1)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment,” IEE Proc. Optoelectron., vol. 152, no. 4, pp. 230–238, 2005.

IEE Proc.-Optoelectron. (1)

J. M. H. Elmirghani, H. Chan, and R. Cryan, “Sensitivity evaluation of optical wireless PPM systems utilising PIN-BJT receivers,” IEE Proc.-Optoelectron., vol. 143, no. 6, pp. 355–359, 1996.

IEEE Commun. Mag. (1)

J. M. Kahn, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag., vol. 36, no. 12, pp. 88–94, 1998.

IEEE Commun. Surveys Tuts. (1)

A. T. Hussein and J. M. H. Elmirghani, “A survey of optical and terahertz (THz) wireless communication systems,” IEEE Commun. Surveys Tuts., 2015, submitted for publication.

IEEE J. Opt. Commun. Netw. (1)

F. E. Alsaadi and J. M. H. Elmirghani, “Mobile multigigabit indoor optical wireless systems employing multibeam power adaptation and imaging diversity receivers,” IEEE J. Opt. Commun. Netw., vol. 3, no. 1, pp. 27–39, 2011.

IEEE J. Sel. Areas Commun. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367–379, 1993.

IEEE Photon. J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012. 

IEEE Photon. Technol. Lett (1)

D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED of DM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, 14.

IEEE Photon. Technol. Lett. (1)

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh , “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 1243–1245, 2008.

IEEE Trans. Commun. (3)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Line strip spot-diffusing transmitter configuration for optical wireless systems influenced by background noise and multipath dispersion,” IEEE Trans. Commun., vol. 52, no. 1, pp. 37–45, 2004.

P. Djahani and J. M. Kahn, “Analysis of infrared wireless links employing multibeam transmitter and imaging diversity receivers,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2077–2088, 2000.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers, and combining schemes,” IEEE Trans. Commun., vol. 52, no. 10, pp. 1622–1631, 2004.

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

IEEE Trans. Inf. Theory. (1)

P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory., vol. 48, no. 6, pp. 1277–1294, 2002.

IEEE Trans. Nucl. Sci. (1)

B. Leskovar, “Optical receivers for wide band data transmission systems,” IEEE Trans. Nucl. Sci., vol. 36, no. 1, pp. 787–793, 1989.

IEEE Wireless Commun. (1)

K. K. Wong and T. O’Farrell, “Spread spectrum techniques for indoor wireless IR communications,” IEEE Wireless Commun., vol. 10, no. 2, pp. 54–63, 2003.

J. Lightw. Technol. (5)

M. Biagi, T. Borogovac, and T. D. C. Little, “Adaptive receiver for indoor visible light communications,” J. Lightw. Technol., vol. 31, no. 23, pp. 3676–3686, 2013.

F. E. Alsaadi and J. M. H. Elmirghani, “High-speed spot diffusing mobile optical wireless system employing beam angle and power adaptation and imaging receivers,” J. Lightw. Technol., vol. 28, no. 16, pp. 2191–2206, 2010.

M. T. Alresheedi and J. M. H. Elmirghani, “10 Gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with ‘imaging detection,” J. Lightw. Technol., vol. 30, no. 12, pp. 1843–1856, 2012.

S. Zhang, S. Watson, J. McKendry, D. Massoubre, A. Cogman, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightw. Technol., vol. 31, no. 8, pp. 1211–1216, 2013.

F. E. Alsaadi, M. A. Alhartomi, and J. M. H. Elmirghani, “Fast and efficient adaptation algorithms for multi-gigabit wireless infrared systems,” J. Lightw. Technol., vol. 31, no. 23, pp. 3735–3751, 2013.

Nature Photon. (1)

D. O’Brien, G. Parry, and P. Stavrinou, “Optical hotspots speed up wireless communication,” Nature Photon., vol. 1, no. 5, pp. 245–247, 2007.

Opt. Express (4)

A. Neumann, J. J. Wierer, W. Davis, Y. Ohno, S. Brueck, and J. Y. Tsao. “Four-color laser white illuminant demonstrating high color-rendering quality,” Opt. Express, vol. 19, no. 104, pp. 982–990, 2011.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express, vol. 20, no. 26, pp. 501–506, 2012.

Z. Wang, C. Yu, W. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express, vol. 20, no. 4, pp. 4564–4573, 2012.

S. Soltic and A. Chalmers, “Optimization of laser-based white light illuminants,” Opt. Express, vol. 21, no. 7, pp. 8964–8971, 2013.

Proc. IEEE (2)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.

Other (19)

IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, pp. 1–309.

T. Komine, “Visible light wireless communication and its fundamental,” Ph.D. dissertation, Dept. Informat. Comput. Sci., Keio Univ., Tokyo, Japan, 2005.

M. Tolstrup, Indoor Radio Planning: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE. New York, NY, USA: Wiley, 2011.

Lighting of Indoor Work Places. (2015, Jan. 1). European Standard EN 12464-1. [Online]. Available: http://www.etaplighting.com/uploadedFiles/Downloadable_documentation/documentatie/EN12464_E_OK.pdf

W. R. McCluney, Introduction to Radiometry and Photometry. Norwood, MA, USA: Artech House, 1994.

A. Ryer and V. Light. (2015, Jan. 1). Light Measurement Handbook. [Online]. Available: http://irtel.uni-mannheim.de/lehre/seminar-psychophysik/artikel/alex_ryer_light_measurement_handbook.pdf

Z. Xie, K. Cui, H. Zhang, and Z. Xu, “Capacity of MIMO visible light communication channels,” in Proc. Photon. Soc. Summer Top. Meet. Ser., 2012, pp. 159–160.

P. A. Haigh, T. T. Son, E. Bentley, Z. Ghassemlooy, H. L. Minh, and L. Chao, “Development of a visible light communications system for optical wireless local area networks,” in Proc. IEEE Comput., Commun. Appl. Conf., 2012. pp. 315–355.

L. Zeng, H. L. Minh, D. C. O Brien, G. Faulkner, K. Lee, D. Jung, and Y. Oh, “Equalisation for high-speed visible light communications using white-leds,” in Proc. 6th Int. Symp. Commun. Syst., Netw. Digit. Signal Process., 2008, pp. 170–173.

K. D. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habel, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in Proc. 13th Int. Conf. Transp. Opt. Netw., 2011, pp. 1–5.

C. Kottke, J. Hilt, K. Habel, J. Vuèiæ, and K. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” presented at the Proc Eur. Conf. Exhib. Opt. Commun., Opt. Soc. Amer., Amsterdam, The Netherlands, 2012, Paper We.3.B.

R. Gatdula, J. Murray, A. Heizler, and M. Shah. (2015, Jan. 1). Solid state lighting with blue laser diodes. [Online]. Available: http://www.winlab.rutgers.edu/∼crose/capstone12/entries/SolidStateLightingwBlueLaser-Diodes-Revised.pdf

(2015, Jan. 1). Laser light leading the way to the future. [Online]. Available: http://46.4.5.252/en_au/bmw-i8/laser-light-leading-the-way-to-the-future/94/laser-light-leading-the-way-to-the-future

N. Fujimoto and H. Mochizuki, “477Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” in Proc Opt. Fibre Commun. Conf. Expo. Nat. Fibre Opt. Eng. Conf., 2013, pp. 1–3.

H. L. Minh, D. C. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proc. 34th Eur. Conf. Opt. Commun., 2008, pp. 1–2.

A. Stimson, Photometry and Radiometry for Engineers. New York, NY, USA: Wiley-Interscience, 1974.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., 2001, vol. 2, pp. 81–85.

N. Saha, R. K. Mondal, N. T. Le, and Y. M. Jang, “Mitigation of interference using OFDM in visible light communication,” in Proc. Int. Conf. ICT Convergence, 2012, pp. 159–162.

(2015, Jan. 1). LD lighting engine is a new type of light source from Toshiba. [Online]. Available: http://reefbuilders.com/2012/07/23/ld-lighting-engine-toshiba/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.