Abstract

Photonic crystal (PhC) heterostructures combining segments of slightly different PhCs have been used to develop photonic devices, such as high-performance add/drop filters and microcavities with ultrahigh-quality factors. In this paper, we present a highly efficient computational method for simulating PhC heterostructure devices based on a two-dimensional (2-D) model. The method delivers high-accuracy results with ultrasmall-computational domains and an exponential convergence rate, and it takes full advantage of the existence of many identical unit cells and the circular shape of the air holes in typical slab-based PhC heterostructure devices. The 2-D model can capture many features of realistic PhC heterostructure devices fabricated on silicon slabs. Our method can be used to explore a large number of parameters in the design and optimization process.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription