Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 9,
  • pp. 1701-1707
  • (2014)

Electromagnetically Induced Transparency-Like Transmission in a Compact Side-Coupled T-Shaped Resonator

Not Accessible

Your library or personal account may give you access

Abstract

A plasmonic bus waveguide with a side-coupled T-shaped (TS) or a reverse T-shaped (RTS) resonator consisting of a parallel and a perpendicular cavities is proposed. The compact configuration could serve as a wavelength demultiplexing device as a forbidden band is achieved based on the symmetric distribution of resonators. By shifting one cavity away from the center of the resonator, the system exhibits electromagnetically induced transparency (EIT) like transmission at the wavelength of the former forbidden band. The electromagnetic responses of the structure could be handled with certain flexibility by changing the asymmetric behavior of the TS or RTS resonator. Similar characteristics for two proposed structures could be obtained except for the center wavelength that is determined by the two cavities in the RTS resonator or by the cavity parallel to the bus waveguide in the TS resonator.

© 2014 IEEE

PDF Article
More Like This
Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators

Yinghui Guo, Lianshan Yan, Wei Pan, Bin Luo, Kunhua Wen, Zhen Guo, and Xiangang Luo
Opt. Express 20(22) 24348-24355 (2012)

Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu
Opt. Express 22(3) 3219-3227 (2014)

Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system

Zecen Zhang, Geok Ing Ng, Ting Hu, Haodong Qiu, Xin Guo, Mohamed Saïd Rouifed, Chongyang Liu, and Hong Wang
Opt. Express 24(22) 25665-25675 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved